
Multiscale Dynamic Time and Space Warping

by MASSACHLlSETTS INSTTE
OF TEOHNOLOGY

Fitriani
SEP 0 5 2008

B.Eng., Computer Engineering
Nanyang Technological University, 2007 LIBRARIES

Submitted to the School of Engineering
in partial fulfillment of the requirements for the degree of

Master of Science in Computation for Design and Optimization

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2008

@ Massachusetts Institute of Technology 2008. All rights reserved.

A u th or ..
School of Engineering

August 14, 2008

Certified by.............
Brian W. Anthony

Research Scientist, Laboratory for Manufacturing and Productivity
Director SMA-Manufacturing Systems and Technology

Thesis Supervisor

A ccepted by Peraire............
Jaime Peraire

Professor of Aeronautics and Astronautics
Codirector, Computation for Design and Optimization Program

2MCHIVES

Multiscale Dynamic Time and Space Warping

by

Fitriani

Submitted to the School of Engineering
on August 14, 2008, in partial fulfillment of the

requirements for the degree of
Master of Science in Computation for Design and Optimization

Abstract

Dynamic Time and Space Warping (DTSW) is a technique used in video matching ap-
plications to find the optimal alignment between two videos. Because DTSW requires
O(N 4) time and space complexity, it is only suitable for short and coarse resolution
videos. In this thesis, we introduce Multiscale DTSW: a modification of DTSW that
has linear time and space complexity (O(N)) with good accuracy.

The first step in Multiscale DTSW is to apply the DTSW algorithm to coarse
resolution input videos. In the next step, Multiscale DTSW projects the solution
from coarse resolution to finer resolution. A solution for finer resolution can be
found effectively by refining the projected solution. Multiscale DTSW then repeatedly
projects a solution from the current resolution to finer resolution and refines it until
the desired resolution is reached.

I have explored the linear time and space complexity (O(N)) of Multiscale DTSW
both theoretically and empirically. I also have shown that Multiscale DTSW achieves
almost the same accuracy as DTSW.

Because of its efficiency in computational cost, Multiscale DTSW is suitable for
video detection and video classification applications. We have developed a Multiscale-
DTSW-based video classification framework that achieves the same accuracy as a
DTSW-based video classification framework with greater than 50 percent reduction
in the execution time. We have also developed a video detection application that is
based on Dynamic Space Warping (DSW) and Multiscale DTSW methods and is able
to detect a query video inside a target video in a short time.

Thesis Supervisor: Brian W. Anthony
Title: Research Scientist, Laboratory for Manufacturing and Productivity

Acknowledgments

I would like to thank my thesis advisor, Dr. Brian W. Anthony, for his invaluable

advice and guidance during my research. Throughout my research project, he has

painstakingly imparted his knowledge in the area of this research. His ideas and

suggestions on the design of Multiscale DTSW and its applications were very valuable.

Without his full support and great patience, it would be impossible for this research

to be such a fulfilling and enriching experience.

I would also like to thank Singapore-MIT Alliance (SMA) for providing the re-

quired funding for my Master degree. I would like to specially thank Dr. John

Desforge and Jocelyn Sales for their assistance and attention to every detail of our

stay. I would also like to extend my gratitude to Michael Lim for helping me with

the administration stuff.

I would also like to thank Computation for Design and Optimization Program for

providing the great opportunity to carry out this research. I would like to specially

thank Laura Koller for her assistance on all the administrative procedures.

Finally, I would like to thank my parents and all my friends who have given me

strength and encouragement throughout the research.

Contents

1 Introduction

1.1 Motivation

1.1.1 Video Query Application

1.1.2 Video Detection Application

1.1.3 Video Classification Application . .

1.1.4 Combination of Video Classification

1.1.5 Video Comparison Based Judging .

1.2 Background

1.3 Problem Statement

1.4 Contributions

1.5 Literature Review

1.6 Document Outline

and Detection

23

.. 23

. 23

. 23

. 24

Application 25

.. 25

.. 26

.. 26

.. . . . 27

. 27

.. 29

2 Related Algorithms

2.1 DTW

2.1.1 DTW Algorithm . .

2.1.2 Complexity of DTW .

2.1.3 FastDTW

2.2 DTSW

2.2.1 DTSW Algorithm. ..

2.2.2 Complexity of DTSW

3 Multiscale DTSW

3.1 Multiscale DSTW Algorithm

3.2 Complexity of Multiscale DTSW

3.2.1 Time Complexity

3.2.2 Space Complexity

3.3 Analysis of Multiscale DTSW Algorithm

3.3.1 Optimal Level

3.3.2 Relaxation Radius

3.3.3 Multiscale DTSW Efficiency . . .

3.4 Experimental Result

4 Extension of Multiscale DTSW

4.1 Multiscale DTSW with Eigenframes Implementation

4.1.1 Principal Component Analysis

4.1.2 Implementation of Eigenframes in Multiscale DTSW

4.1.3 Experimental Result

4.2 Multiscale DTSW with Control Points

4.3 Multiscale DTSW with Level Jump

4.4 Piece-wise Multiscale DTSW

5 Multiscale DTSW in Video Classification Application

5.1 Video Classification Application

5.2 Selection of Decision Variables

5.2.1 Motion Scalar Combination

5.2.2 Resolution

5.2.3 Maximum Allowable Changes in the x and y Dimensions . . .

5.2.4 Variance for Multiscale DTSWEF

5.3 The Performance of the Video Classification Application

5.3.1 Comparison between DTSW, Multiscale DTSW, and Multiscale

DTSW EF

5.3. 2 Sensitivity to Scale Variance

41

.. . . . 44

.. 51

.. . . . 51

.. . . . 57

. 58

.. . . . 60

.. . . . 61

.. 65

.. . . . 67

77

77

77

78

81

87

89

93

97

97

98

101

105

109

110

111

111

113

6 Multiscale DTSW in Video Detection Application 115

6.1 Video Detection Application 115

6.2 Methods for Comparing Videos in the Video Detection Application 116

6.2.1 DSW 117

6.2.2 Multiscale DTSW 117

6.2.3 Combination of DSW and Multiscale DTSW 119

6.3 The Performance of the Video Detection Application 119

6.3.1 DSW-based Video Detection Application 119

6.3.2 Multiscale-DTSW-based Video Detection Application 121

6.3.3 DSW-and-Multiscale-DTSW-based Video Detection Application 122

6.3.4 Sensitivity to Scale Variance 125

7 Summary 127

7.1 Contributions 127

7.2 Future work 128

A Target and query videos

A.1 Karate punch videos

A.2 Heart valve videos

A.3 Horse racing videos....... .

A.4 Person walking videos

A.5 Palm opening and closing videos ..

A.6 Random videos

A.7 Video classification template videos

129

... 130

... 132

... 134

. 136

. 138

. 140

. 142

B Piece-wise Multiscale DTSW on Karate Punch Videos 145

List of Figures

3-1 Diagram of DTSW 42

3-2 Diagram of Multiscale DTSW with optimal level = 2, r, = 0, rt = 0 . 43

3-3 Flowchart of Multiscale DTSW 47

3-4 Similarity at each level of Multiscale DTSW's execution in comparing

the karate punch videos 48

3-5 Similarity at each level of Multiscale DTSW's execution in comparing

the horse racing videos 49

3-6 Similarity at each level of Multiscale DTSW's execution in comparing

the heart valve videos 49

3-7 Similarity at each level of Multiscale DTSW's execution in comparing

the palm opening and closing videos 50

3-8 Projection of a horizontal warp path to finer resolution hypervolume

with radius = 1 52

3-9 Projection of a vertical warp path to finer resolution hypervolume with

radius = 1 52

3-10 Projection of a diagonal warp path to finer resolution hypervolume

with radius = 1 53

3-11 Projection of a warp path to finer resolution hypervolume in the time

dimension with rt = 1 53

3-12 Projection of a warp path to finer resolution hypervolume in the x

dimension with r, = 1 55

3-13 Projection of a warp path to finer resolution hypervolume in the y

dimension with r, = 1 55

3-14 Total computations versus number of levels of Multiscale DTSW in

comparing two videos with the length of each dimension of the Ele-

mental Distance and Cumulative Distance hypervolumes (N) equal to

100 and rs = rt = {5, 10, 15, 20, 25, 30} 60

3-15 Optimal level versus relaxation radius of Multiscale DTSW in compar-

ing two videos with N=100 66

3-16 Normalized time complexity of Multiscale DTSW versus relaxation

radius in comparing two videos with N={50, 100, 500, 1000} 67

3-17 Normalized time complexity of Multiscale DTSW versus log N with

relaxation radius = {0.5, 0.6, 0.7, 0.8} 68

3-18 Execution time of Multiscale DTSW running on a PC with 3.4 GHz

processor and 1 GB memory versus number of levels in comparing

the karate punch videos with dimension = 81 x 89 x 26 x 13 and

rt = r = {5,10,15,20} 71

3-19 Execution time of Multiscale DTSW running on a PC with 3.4 GHz

processor and 1 GB memory versus number of levels in comparing

the karate punch videos with dimension = 81 x 89 x 26 x 13 and

rt = rs = {25,30,35} 72

3-20 Execution time of DTSW and Multiscale DTSW running on a PC with

3.4 GHz processor and 1GB memory in comparing the karate punch

videos with r, = rt = 5 74

4-1 Computing the Elemental Distance hypervolume in the DTSW algorithm 79

4-2 Computing the Elemental Distance hypervolume in the DTSW algo-

rithm with Eigenframes implementation 80

4-3 The normalized error and normalized execution time in comparing the

karate punch videos using Multiscale DTSW with Eigenframes imple-

mentation and various settings for the variance 83

4-4 The normalized error and normalized execution time in comparing the

heart valve videos using Multiscale DTSW with Eigenframes imple-

mentation and various settings for the variance 84

4-5 The normalized error and normalized execution time in comparing the

palm opening and closing videos using Multiscale DTSW with Eigen-

frames implementation and various settings for the variance 85

4-6 Known-points-based prediction of a warp path in the time dimension 87

4-7 Known-points-based prediction of a warp path in the space dimension 88

4-8 The optimal warp paths of comparing the karate punch videos found

by using Multiscale DTSW at level = 1 to level = 6 90

4-9 Projection of all optimal warp pathes of comparing the karate punch

videos found by using Multiscale DTSW at level=1 to level=6 onto a

common axis 91

4-10 The top left figure shows an example of the optimal warp path at

level=3. The top right figure shows an example of the optimal warp

path at level=4. The bottom figure shows the projection of both op-

timal warp paths to a common axis. The difference between the two

optimal warp paths is defined as the summation of absolute vertical

differences between both warp paths projected to a common axis as

shown in the shaded region in the figure. 92

4-11 Flowchart of Multiscale DTSW with Level Jump 94

5-1 The diagram of the video classification application 98

5-2 An example of a template video and the corresponding template source

video 99

5-3 An example of Receiver Operator Characteristic (ROC) plot 100

5-4 ROC plot of the video classification application on the training set with

different motion scalar combinations 102

5-5 ROC plot of the video classification application on the unknown set

with different motion scalar combinations 102

5-6 ROC plot of the video classification application on the training set with

different settings of the normalized motion scalar combination 104

5-7 ROC plot of the video classification application on the unknown set

with different settings of the normalized motion scalar combination . 104

5-8 ROC plot of the video classification application on the training set

using UN2 as the motion scalar combination and different sets of resolution 106

5-9 ROC plot of the video classification application on the unknown set

using UN2 as the motion scalar combination and different sets of resolution107

5-10 ROC plot of the video classification application on the training set

using u as the motion scalar combination and different sets of resolution 108

5-11 ROC plot of the video classification application on the unknown set

using u as the motion scalar combination and different sets of resolution108

6-1 The diagram of the video detection application

6-2 Three categories of the optimal warp path in the time dimension of

matching a target subvideo to the query video. (a) The target subvideo

is too long to match with the query video (b) The target subvideo

matches the query video (c) The target subvideo is too short to match

with the query video

116

118

A-1 Karate punch query video

A-2 Karate punch target video

A-3 Heart valve query video

A-4 Heart valve target video

A-5 Horse racing query video

A-6 Horse racing target video

A-7 A query video showing a person who is walking

A-8 A target video showing a person walking on the beach

A-9 Palm opening and closing query video

A-10 Palm opening and closing target video

A-11 Random query video

. 130

. 131

. 132

. 133

. 134

. 135

. 136

. 137

. 138

. 139

. 140

A-12 Random target video 141

A-13 A template video for each class in the video classification application

database: walk, run, side, skip, and jump 142

A-14 A template video for each class in the video classification application

database: left-to-right, circular, and hop 143

B-1 Karate punch query video with the Cum hypervolume's dimension =

11 x 12 x 12 x 7 147

B-2 Warped target video using Multiscale DTSW with the Cum hypervol-

ume's dimension = 11 x 12 x 12 x 7 147

B-3 Warped target video using Piece-wise Multiscale DTSW with the Cum

hypervolume's dimension = 11 x 12 x 12 x 7 148

List of Tables

3.1 Comparison of execution time of DTSW and Multiscale DTSW for

various relaxation radii on various sets of video, running on an IBM

Pentium M laptop (1.3 GHz processor with 768 MB memory) 69

3.2 Comparison of normalized execution time of Multiscale DTSW for var-

ious relaxation radii on various sets of video, running on an IBM Pen-

tium M laptop (1.3 GHz processor with 768 MB memory) 70

3.3 Comparison of error of Multiscale DTSW for various relaxation radii

on various sets of video, running on an IBM Pentium M laptop (1.3

GHz processor with 768 MB memory) 73

3.4 Comparison of execution time of DTSW and Multiscale DTSW for

various relaxation radii in comparing the karate punch and horse racing

videos running on a PC with 3.4 GHz processor and 1 GB memory 73

3.5 Comparison of normalized execution time of DTSW and Multiscale

DTSW for various relaxation radii in comparing the karate punch and

horse racing videos running on a PC with 3.4 GHz processor and 1 GB

memory 75

3.6 Comparison of error of DTSW and Multiscale DTSW for various re-

laxation radii in comparing the karate punch and horse racing videos

running on a PC with 3.4 GHz processor and 1 GB memory 75

4.1 The normalized execution time of DTSWEF in comparing the karate

punch, heart valve, and palm opening and closing videos with the vari-

ance = {100%, 90%, 80%, 70%} 82

4.2 The normalized error of DTSWEF in comparing the karate punch,

heart valve, and palm opening and closing videos with the variance =

{100%, 90%, 80%, 70%} 82

4.3 The normalized execution time and the normalized error of DTSW,

Multiscale DTSW, and Multiscale DTSWEF in comparing the karate

punch, heart valve, and palm opening and closing videos with the con-

straint that the normalized error must be less than 10% 86

4.4 Comparison of execution time of Multiscale DTSW and Multiscale

DTSW with Control Points running on a Pentium M laptop with 1.3

GHz processor and 768 MB memory in comparing the karate punch

videos 89

4.5 Comparison of execution time of DTSW, Multiscale DTSW, and Mul-

tiscale DTSW with Level Jump in comparing the karate punch videos

running on a Pentium M laptop with 1.3 GHz processor and 768 MB

memory 93

5.1 The accuracy of the video classification application on the training and

unknown sets for different motion scalar combinations 101

5.2 The accuracy of the video classification application on the training

and unknown sets for various settings of the normalized motion scalar

combination 105

5.3 The accuracy of the video classification application on the training

and unknown sets for various sets of resolution with UN2 as the motion

scalar combination 106

5.4 The accuracy of the video classification application on the training and

unknown sets for various sets of resolution with u as the motion scalar

combination 109

5.5 The accuracy of the video classification application on the training set

for various values of b. and by 110

5.6 The accuracy of the Multiscale-DTSWEF-based video classification ap-

plication on the training set with various settings for the variance . . 111

5.7 The normalized execution time and percentage error of the video clas-

sification application based on DTSW, Multiscale DTSW, and Multi-

scale DTSWEF on the unknown set 111

5.8 The accuracy of the Multiscale-DTSWEF-based video classification ap-

plication on the training set (left-to-right, circular, and hop sets) for

various settings for the variance 112

5.9 The normalized execution time and accuracy of the video classification

application based on DTSW and Multiscale DTSW on the unknown

set in classifying left-to-right, circular, and hop pointing actions . . . 113

5.10 The accuracy of the video classification application on the unknown set

for various scale differences between the template and unknown videos 113

6.1 The accuracy in the time dimension of the DSW-based video detection

application on 40 target cases with various temporal detection offsets.

The optical flow component used was u. Variable b. = 5 and by = 3.

Resolution was 21 x 13 x 13 (x x y x time dimension). 120

6.2 The accuracy in the space dimension of the DSW-based video detection

application on 40 target cases with various spatial detection offsets.

The optical flow component used was u. Variable b, = 5 and by = 3.

Resolution was 21 x 13 x 13 (x x y x time dimension). 121

6.3 The accuracy in the time dimension of the Multiscale-DTSW-based

video detection application on 40 target cases with various temporal

detection offsets. The optical flow component used was u. Variable

b, = 5 and by = 3. Resolution was 21 x 13 x 13 (x x y x time

dimension). 121

6.4 The accuracy in the space dimension of the Multiscale-DTSW-based

video detection application on 40 target cases with various spatial de-

tection offsets. The optical flow component used was u. Variable

bx = 5 and by = 3. Resolution was 21 x 13 x 13 (x x y x time

dimension). 122

6.5 The accuracy in the time dimension of the DSW-and-Multiscale-DTSW-

based video detection application on 200 target cases with various tem-

poral detection offsets. The optical flow component used was u. Vari-

able bx = 5 and by = 3. Resolution was 21 x 13 x 13 (x x y x time

dimension). 123

6.6 The accuracy in the space dimension of the DSW-and-Multiscale-DTSW-

based video detection application on 200 target cases with various spa-

tial detection offsets. The optical flow component used was u. Variable

be = 5 and by = 3. Resolution was 21 x 13 x 13 (x x y x time dimension).123

6.7 The accuracy in the time dimension of the DSW-based video detection

application on 200 target cases with various temporal detection offsets.

The optical flow component used was u. Variable bx = 5 and by = 3.

Resolution was 21 x 13 x 13 (x x y x time dimension). 124

6.8 The accuracy in the space dimension of the DSW-based video detection

application on 200 target cases with various spatial detection offsets.

The optical flow component used was u. Variable bx = 5 and by = 3.

Resolution was 21 x 13 x 13 (x x y x time dimension). 124

6.9 The average accuracy in the time dimension of the video detection

application on 40 target cases for various scale differences between the

query and target videos. The optical flow component used was u.

Variable bx = 5 and by = 3. Resolution was 21 x 13 x 13 (x x y x

time dimension). The method used was the combination of DSW and

Multiscale DTSW 125

6.10 The average accuracy in the space dimension of the video detection

application on 40 target cases for various scale differences between the

query and target videos. The optical flow component used was u.

Variable b, = 5 and by = 3. Resolution was 21 x 13 x 13 (x x y x

time dimension). The method used was the combination of DSW and

Multiscale DTSW. 125

B.1 Comparison of the similarity between the query video and the warped

target video found using Multiscale DTSW and Piece-wise Multiscale

DTSW. The similarity between two videos is measured by the absolute

difference between the two videos. The absolute difference between

two videos is defined as the summation of the absolute difference in

the grayscale value of each pixel in each frame of the two videos. The

higher the absolute difference is, the more dissimilar the two videos are.

The execution time for each experiment running on an IBM Pentium

M laptop (1.3 GHz processor with 768MB memory) is also included. . 146

Chapter 1

Introduction

1.1 Motivation

There are many applications that require a quantified comparison between two videos

in a short time. Below are five categories of such applications.

1.1.1 Video Query Application

In most video query applications for example YouTube and Google video, we can find

a video in a video database by searching for keywords. Keywords are generated from

audio tracks or manually entered. Queries are limited to these words. Often we are

interested in the videos visual contents.

Video content query is one solution to this problem. Such a video query application

uses a video clip as an example and returns the similar video clips from the video

database. In order to be practical, the video query application must return the similar

videos within a few seconds. We need to have an algorithm that can rapidly compare

two videos.

1.1.2 Video Detection Application

In video detection applications, we search for a query video inside of a temporally and

spatially larger target video. Video detection applications can be online or off-line.

Online video detection application means that the application is trying to find a

query video inside a real-time captured video. One of the applications is a video-based

autonomous monitoring system for failure detection in the manufacturing industry.

The system compares a real-time video clip of one cycle of a manufacturing process

with a target video of the ideal one cycle of the manufacturing process. If a deviation

to the ideal manufacturing process is detected based on the video clips' dissimilarity,

the system will shut down the manufacturing machine and report a system failure.

Early failure detection is important in the manufacturing industry to prevent the

failure from propagating to other parts of the manufacturing process and causing

more serious damage. In addition, because the damage is isolated, we will know

exactly which part of the manufacturing machinery that causes the problem.

On the other hand, for off-line video detection applications, the target video is

recorded. Hence, these applications do not really need to enforce a time constraint in

obtaining the detection result. For example, we are given a soccer match video and

we are only interested in the goals. So we run a video detection application to find all

occurrences of goal. Maybe we do not really mind if the result comes out five to ten

minutes after we run the application. However, we do not want to wait for hours to

retrieve the goals. Therefore, in online or off-line video detection applications, there

is a need for a fast algorithm in comparing two videos.

1.1.3 Video Classification Application

In video classification applications, we find if an unknown video belongs to one of

several classes or categories of video. For example, we record several athletic events,

and then we want the videos to be classified into running, throwing, and jumping. One

or several videos for each class contain the represented activity - this is the training

set. We compare an unknown video to the training set to determine to which class it

belongs.

1.1.4 Combination of Video Classification and Detection Ap-

plication

There are some applications that are a combination of video classification and video

detection. For instance, an application that interprets videos of person performing

sign language for deaf people. The application has a "dictionary" that consists of all

videos showing every word in the sign language. Firstly, the application must be able

to detect which subsequence of frames of the input video that represents a word and

which part of the video that does not represent any sign language's words. Secondly,

the application needs to search for the best match between the detected subsequence

of frames and the application's sign language dictionary to interpret the detected sign

language's word into a verbal word.

This application is computationally expensive because it needs to perform hun-

dreds or thousands of video clips comparison. Therefore, to reduce its complexity,

this application really needs an inexpensive video comparison algorithm.

1.1.5 Video Comparison Based Judging

Think of a sports competition where the winner of the competition is decided by a

panel of judges based on their decisions on how well the acts performed by the ath-

lete. One example is a diving competition. Since the scores at the diving competition

are only based on human's evaluation, the scores may not be as objective as it could

be. If we can develop an application that can give a comparison between the move-

ment performed by the athlete and the ideal movement, the objectivity of the scoring

system of the competition can be improved. Although this application is not meant

to replace the panel of judges, it can help the judges on their decision. Due to the

nature of this application, the comparison of two videos should take less than a few

minutes. If the application takes longer than few minutes, it will be useless since the

judges must give their scores within few minutes after the athlete has performed.

In summary, there are a lot of applications that requires a fast video comparison

algorithm.

1.2 Background

Dynamic Time Warping (DTW) is a technique to calculate the similarities between

two time series. DTW aligns two time series by compressing or stretching the time

axis. DTW is widely used in various research fields: gesture recognition [6], speech

recognition [19], data mining [2, 13, 29], manufacturing [7], medicine [5], ECG pattern

matching [5, 27], robotics [18, 24], biometric data alignment [6, 11, 15, 16], and

polymerization synchronization [11].

An extension of DTW, Dynamic Time and Space Warping (DTSW), has been

developed by Anthony [1] to find the similarities between two video clips. The algo-

rithm optimally warps time and shifts space in order to align the query video with

the target video. The output of DTSW is an optimal warp path in the time and space

for optimal video alignment.

In [1], Anthony demonstrates the applicability of DTSW to industrial wear mon-

itoring, failure prediction, and assembly-line feedback control. The DTSW technique

can also be applied to video detection and classification applications.

1.3 Problem Statement

As mentioned in the motivation section, there are numerous applications that require

an algorithm that can compare two videos and determine their similarities in a short

time.

Although DTSW is good in comparing two video clips, it is computationally ex-

pensive. DTW, which works on a single value series, needs quadratic time and space

complexity (O(N 2)). DTSW, which is an extension of DTW and works on a 2-D

value series, needs O(N 4) time and space complexity.

1.4 Contributions

In this thesis, we introduce Multiscale DTSW, a modification of DTSW that has

linear time and space complexity (O(N)) without greatly reducing the accuracy of

the comparison results.

Extensions of Multiscale DTSW utilize additional information about the two input

videos to further reduce the computational cost.

A video classification application that is based on Multiscale DTSW is developed.

It accomplishes the same classification result as a DTSW-based video classification

application with lesser execution time.

A video detection application that combines Dynamic Space Warping (DSW)

and Multiscale DTSW techniques is developed. It detects the temporal and spatial

location of a query video inside a target video in a fast and accurate manner.

1.5 Literature Review

Dynamic Time Warping (DTW) algorithm [8, 12, 17, 21] optimally aligns two time

series that have variation along the time axis. B. W. Anthony [1] extends the DTW

algorithm to align two videos and include the variation along the spatial axis in

addition to the variation along the time axis. The algorithm is called Dynamic Time

and Space Warping (DTSW). DTSW aims to find the optimal way to warp the time

and shift the space of the query video such that it is as similar as possible to the

target video. DTW and DTSW are implemented using the dynamic programming

technique.

As discussed in [1], the advantages of DTSW compared to existing

appearance-based techniques include:

* DTSW can be used to determine detailed similarities between two

videos as a function of time and space.

* DTSW is structured such that it can be implemented using parallel

processing to increase the rate of operation.

* DTSW uses motion, pixels, or any other volumetric data that is

application appropriate.

* DTSW is appropriate for subject matter that is amorphous and flex-

ible.

* DTSW can be used for video comparison or alignment, video event

detection, and video classification applications.

DTSW has a parallel structure that makes it fast enough to be relevant to real-

time industrial applications. Parallel processor and computation is often expensive.

This motivates us to research strategies to reduce the computational cost of DTSW

without significant degradation in accuracy.

Because DTSW is an extension of DTW, many techniques built to reduce the

complexity of DTW can be applied to DTSW to reduce the complexity of DTSW.

The first technique is to reduce the computations of the DTW cost matrix by se-

lecting particular region in the DTW cost matrix as the search region. In other words,

we enforce a constraint in the DTW optimization problem. The most commonly used

constraints are the Sakoe-Chuba Band [22] and the Itakura Parallelogram [9]. The

width of the search region of the DTW cost matrix (or window) is specified by a

parameter. The optimal warp path is found within the search region. Therefore, the

optimal warp path found by this technique may not be globally optimal if the global

optimal warp path does not lie within the search region. This speed-up technique can

be used only if we expect the optimal warp path to be nearly straight diagonal path

or to lie inside the search region.

A second technique to reduce computational cost is to run DTW on downsampled

inputs [4, 13]. A warp path is found at coarse time resolution and then the warp path

is projected to the original resolution without any further refinement. The projected

warp path is the final solution to the DTW problem. Because this method ignores

the local variations that could occur in between the resolutions, the warp path found

by this method may be far from optimal.

The third technique is to apply a multilevel approach that is similar to the mul-

tilevel approach used for graph bisection[10]. The objective of graph bisection is to

divide a graph into two partitions with a constraint that the sum of the weights of the

edges connecting the two partitions is as small as possible. For the graph bisection

problems, there exists some efficient algorithms for solving small graphs problems.

However, the algorithms are not efficient for large graphs. In the multilevel approach,

the large graph to be partitioned is downsampled into a small graph. The solution

for the bisection of the small graph can be computed efficiently using the existing al-

gorithm. The solution is then projected to a slightly larger graph, and the projected

solution in the larger graph is then refined. Refinement to the partial (non optimal)

solution can be found efficiently. The process of projecting the solution to a slightly

larger graph and refining the solution is repeated until the solution to the original-size

graph is found.

In this research, we apply a multilevel or multiscale approach to DTSW. The

reason of chosing multiscale approach to reduce the complexity of DTSW is that

FastDTW algorithm [23] developed by S. Salvador and P. Chan has successfully ap-

plied this multiscale approach to DTW and proven that FastDTW can achieve almost

optimal results with linear complexity. Another reason to use multiscale approach

rather than other approaches is that we can derive scale information regarding the

movement or action in the input videos based on the solution at different levels of

resolution. Based on the solution for the coarsest resolution, we can compare the low

frequency movement between the two input videos. Similarly, based on the solution

for the finest resolution, we can compare the high frequency movement between the

two input videos. This will be useful if we want to classify a video to two or more

different classes based on its low or high frequency motion content.

1.6 Document Outline

The rest of this document is organized as follows. In Chapter 2 we review DTW

and DTSW. In Chapter 3 we develop the Multiscale DTSW algorithm and explain

its computational complexity. We include experimental results. In Chapter 4 we ex-

plore several extensions of Multiscale DTSW that reduce the complexity of Multiscale

DTSW. In Chapter 5 we develop a video classification application where Multiscale

DTSW is shown to be very efficient. In Chapter 6 we build a video detection applica-

tion using a combination of DSW and Multiscale DTSW methods. In Chapter 7 we

summarize the contribution of this research and suggest future research directions.

Chapter 2

Related Algorithms

2.1 DTW

Dynamic Time Warping (DTW) [14, 23] is a technique that compares two time series

by finding the optimal alignment between the two time series. DTW compresses or

stretches one of the time series along its time dimension in order to match it with the

other time series.

2.1.1 DTW Algorithm

The problem statement of DTW is defined as follows . There are two time series, C

of length I, and Q of length J, where

C -= c1, 2, ...Ci, ... , CI, (2.1)

and

Q = ql, q2, ...qj, ..., qJ. (2.2)

The objective of DTW is to find the optimal warp path. The optimal warp path is

the path that has the minimum cost of aligning the two time series or the minimum

warp cost. The notation of a warp path is

W = W1, W2, ... Wk, ..., WK, (2.3)

where max(I,J) < K < (I + J). Variable K is the length of the optimal warp path,

and the kth element of the optimal warp path is

Wk = (k k), (2.4)

where jk is an index in time series Q, and ik is an index in time series C.

A warp path is a sequence of 2-D indices that must satisfy:

* Boundary condition: wl must be equal to (1,1) and wk must be equal to

(J,I). These conditions restrict a warp path to start at the beginning of both

time series and finish at the end of both time series.

* Continuity condition: If Wk = (a, b), then Wk+l = (a', b'), where a - a' < 1,

and b - b' < 1. This requirement restricts a warp path from moving to any but

adjacent cells.

* Monotonicity condition: If Wk = (a, b), then wk+1 = (a', b'), where a - a' > 0,

and b - b' > 0. In other words, the monotonicity condition means that the 2-D

indices in a warp path have to be monotonically increasing.

The first step in DTW is to construct a J-by-I distance matrix (D) where the

(jthith) element of the matrix contains the distance between qj and ci. The distance

between qj and ci is defined as D(j, i) = (qj - ci) 2

The next step is to build a J-by-I cumulative matrix (Cum). Each element of the

Cum matrix - Cum(j, i) - is a summation of the distance between qj and ci - D(j, i)

- and the cumulative distance of its adjacent elements:

Cum(j, i) = D(j, i) + min{Cum(j - 1, i), Cum(j, i - 1), Cum(j - 1, i - 1)}. (2.5)

There are only three adjacent elements in Equation 2.5 due to the continuity and

monotonicity restrictions of a warp path.

The final step in DTW is to find the optimal warp path. There are exponentially

many possible warp paths. However, the optimal warp path is the path that has the

minimum warp cost:

d*,Tw(Q, C) = min K (2.6)

The K in the denominator is used to normalize the warp cost as different warp paths

may have different lengths. Due to the boundary condition of a warp path, the two

ends of the optimal warp path must be (1, 1) and (J, I).

DTW starts a process of searching for the optimal warp path at cell (J, I). DTW

then selects which path it should move to by comparing the value of the adjacent cells

in the Cum matrix. The adjacent cells are the cells to the left, down, and diagonally

to the down-left of the current cell. Whichever of these three adjacent cells that has

the smallest value in the Cum matrix is added to the optimal warp path found so far,

and the searching moves to the newly added cell. The steps of comparing the values

of the adjacent cells in the Cum matrix, adding the cell with the smallest value to

the optimal warp path, and moving to the newly added cell, are repeated until the

searching reaches cell (1,1). The optimal warp path is the set of indices of the cells

that have been passed through by the searching process from (J, I) to (1,1).

2.1.2 Complexity of DTW

Assume that the length of time series C (I) and the length of time series Q (J) are

both equal to N; then the time and space complexity of DTW are analyzed as follows.

Time complexity

DTW has two major computations:

- Building matrices

DTW needs to compute a distance and cumulative matrix (D and Cum).

Both matrices are of size I x J = N x N. Therefore, the cost of building

the distance and cumulative matrix is equal to 2N 2.

- Searching for the optimal warp path

In the worst case (Equation 2.3), the optimal warp path is of length I+J =

N + N. Thus, the cost of finding the optimal warp path is equal to 2N.

In summary, the total time complexity of DTW is equal to 2N 2 + 2N.

* Space complexity

DTW needs to store a distance matrix (D) and a cumulative matrix (Cum).

Each matrix is of size I x J = N x N. Therefore, to store both matrices, DTW

needs 2N 2 of space. Hence, the space complexity of DTW is equal to 2N 2.

In conclusion, DTW has quadratic time and space complexity (O(N 2)).

2.1.3 FastDTW

DTW algorithm is only suitable for comparing short time series because of its quadratic

time and space complexity. The computational cost of DTW algorithm in comparing

long time series is enormous. Therefore, there is a need for methods that can speed

up the DTW algorithm. One of the methods is called FastDTW [23], which was

developed by S. Salvador and P. Chan.

FastDTW applies multiscale approach to DTW to reduce its complexity to linear

complexity. Firstly, FastDTW downsamples the input time series to the coarsest

resolution. Secondly, FastDTW applies the DTW algorithm to the coarsest resolution

time series to obtain a solution for the coarsest resolution. Subsequently, FastDTW

projects the solution for the coarsest resolution to finer resolution. FastDTW then

does some refinement to the projected solution to improve the accuracy of the solution.

FastDTW then repeatedly projects the solution to finer resolution and refines the

solution until the solution for the finest resolution is obtained. The linear time and

space complexity of FastDTW have been proven both theoretically and empirically

in [23].

Although FastDTW algorithm is not guaranteed to find the optimal solution,

based on the experiment carried out by S. Salvador and P. Chan, the accuracy of

FastDTW's solution as compared to the solution of DTW algorithm is satisfactory.

2.2 DTSW

Dynamic Time and Space Warping (DTSW) [1] is an extension of DTW and was

developed by B. W. Anthony (2006) to determine a detailed comparison in the time

and space dimensions between a query and target video. DTSW compares two videos

- a query and target video- by finding the optimal path to align the query video in

the time and space dimensions of the target video.

In DTSW, a video that is spatially larger than the other is the target video, and

a video that is spatially smaller than the other is the query video. The target video

can be temporally shorter or longer than the query video.

2.2.1 DTSW Algorithm

The problem statement of DTSW is defined as follows. There are two videos: a query

video, Q, with a length of J frames and a size of [NQ x MQ] for each frame; and a

target video, C, with a length of I frames and a size of [Nc x Mc] for each frame. Q

has smaller spatial size; NQ _ Nc and MQ • Mc. The objective of DTSW is to find

the optimal warp path. The optimal warp path is the path that has the minimum cost

of aligning the two videos or the minimum warp cost. The notation of the optimal

warp path is

W = W1, 2, ...Wk, ..., WK, (2.7)

where max(I,J) < K < (I + J). Variable K is the length of the optimal warp path,

and the kth element of the optimal warp path is

Wk = (jk, ik, ,Yk), (2.8)

where jk is an index in the query video Q, ik is an index in target video C, and {xk,yk}

is a possible location of aligning frame QJk to frame Cik.

A warp path is a sequence of 4-D indices that must satisfy:

* Spatial continuity: There is a bound in the spatial change from frame to

frame.

* Spatial drift: If two or more frames of the query video are matched to a frame

in the target video, then the frame-to-frame matching must occur at the same

spatial location.

* Temporal continuity: This is the the continuity condition of DTW.

* Bi-Temporal casuality: The sequence in both videos cannot be out of the

time sequential order.

* Boundary condition: The first frame of the target video must be matched to

the first frame of the query video. Likewise, the last frame of the target video

must be matched to the last frame of the query video.

The first step in DTSW is to calculate the elemental distance between every

frame of the query video and every possible subregion of each frame of the target

video. DTSW then places the results in an Elemental Distance Hypervolume, D.

The elemental distance in DTSW is defined as the similarity measurement between

a frame of the query video and a similar size region of a frame of the target video.

This is because we assume that we can only calculate the similarity measurement

between regions that have the same size. Then, each frame of the query video can be

positioned in X = Nc - NQ different spatial locations horizontally, Y = Mc - MQ

different spatial locations vertically, and I different temporal locations. Hence the

size of the Elemental Distance Hypervolume (D) is II x J x X x YI.

The next step is to compute a Cumulative Distance Hypervolume, Cum, with a

size of II x J x X x YI. Each cell of the Cum hypervolume - Cum(j, i, x, y) - is the

summation of the elemental distance in that cell- D(j, i, x, y) - and the cumulative

distance of the adjacent cells:

Cum(j - 1, i, x, y)

Cum(j, i, x, y) = D(j, i, X, y) + Cum(j, i - 1, x - bx, y - by) (2.9)

Cum(j - 1, i - 1, x - bx, y - by)

The adjacent cells defined in Equation 2.9 are based on the spatial continuity, spa-

tial drift, temporal continuity, and bi-temporal casuality restrictions of a warp path.

Variables bx and by are the maximum allowable changes in the x and y dimensions

between a frame and its adjacent frame.

The final step in DTSW is to find the optimal warp path. There are exponentially

many possible warp paths. However, the optimal warp path is the path that has the

minimum warp cost:

-K D(wk(j), Wk(i), Wk(X), Wk(Y))
DTSW(Q C)= mai K

The K in the denominator is used to normalize the warp cost as different warp paths

may have different lengths. Due to the boundary condition of a warp path, the two

ends of the optimal warp path must be (1, 1, x1, yl) and (J, I, xK, YK).

DTSW starts a process of searching for the optimal path by computing the min-

imum of {Cum(JI,)Cum(J,um(J,I,1,2), ..., Cum(J,I,1,Y), ..., Cum(J,I,2,1), ... ,

Cum(J,I,2,Y), ..., Cum(J,I,X,Y)}. The (J, I, z, y) index of the minimum value

will be (J, I, WK(X), WK(y)). DTSW then selects which path it should move to by

comparing the value of the adjacent cells of the current cell in the Cum matrix. The

adjacent cells are the cells in {Cum(J - 1, I, wK(X), WK(y)), Cum(J, I - 1, WK(X)

- bx, wK(y) - by), Cum(J - 1, I - 1, wK(x) - b,, WK(y) - by)}. Whichever of these

adjacent cells that has the smallest value in the Cum matrix is added to the opti-

mal warp path found so far, and the searching moves to the newly added cell. The

steps of comparing the value of the adjacent cells in the Cum matrix, adding the cell

with the smallest value to the optimal warp path, and moving to the newly added

cell are repeated until the searching reaches cell (1, 1, xl, yl). There is no restriction

for the value of xl and yl. The optimal warp path is the set of indices of the cells

that have been passed through by the searching process from (J, I, WK(X), WK(y)) to

(1, 1, x1, y).

2.2.2 Complexity of DTSW

Assume that I, J, X, and Y in the D and Cum hypervolumes are all equal to N;

then the time and space complexity of DTSW are analyzed as follows.

* Time complexity

DTSW has two major computations:

- Building hypervolumes

DTSW needs to compute an Elemental Distance and Cumulative Distance

hypervolumes (D and Cum). Both hypervolumes are of size I x J xX x Y =

N x N x N x N. Therefore, the cost of building the Elemental Distance

and the Cumulative Distance hypervolumes = 2N 4 .

- Searching for the optimal warp path

In the worst case (Equation 2.7), the optimal warp path is of length I+J =

N + N. For each element in the time dimension of the warp path, DTSW

needs to compare bx x by elements in the space dimension. Thus, the cost

of finding the optimal warp path is 2N x bx x by.

In summary, the total time complexity of DTSW is

2N 4 + (2N x b. x by). (2.11)

* Space complexity

DTSW needs to store an Elemental Distance and Cumulative Distance hyper-

volume. Each hypervolume is of size I x J x X x Y = N x N x N x N = N4 .

Therefore, to store both hypervolumes, DTSW needs 2N 4 of space. Hence, the

space complexity of DTSW is 2N 4

In conclusion, DTSW has O(N 4) time and space complexity.

Chapter 3

Multiscale DTSW

Multiscale DTSW is an extension of DTSW that uses a multiscale approach to reduce

complexity without greatly reducing accuracy.

In Multiscale DTSW, the DTSW algorithm is applied to coarse resolution (down-

sampled in time and space) input videos. Multiscale DTSW then projects the solution

from coarse resolution to finer resolution. Based on the projected solution, a solution

for the finer resolution is refined. Multiscale DTSW then repeatedly projects the

solution from the current resolution to finer resolution until the desired resolution is

reached.

Figure 3-1 shows the diagram of DTSW for comparing two input videos with a

length of 8 frames and 6 frames. The Elemental Distance hypervolume is fully filled

and computed. Based on the filled cells in the Elemental Distance hypervolume,

the optimal warp path is computed. Multiscale DTSW with two levels of resolution

applied to the same input videos is shown in Figure 3-2. We call the two levels of

resolution as coarse resolution and fine resolution. In the first step, the input videos

are downsampled in the time and space dimensions. In the second step, the Elemental

Distance hypervolume for the coarse resolution is fully filled and computed. In the

third step, the optimal warp path for coarse resolution is obtained. In the fourth step,

the optimal warp path for coarse resolution is projected to the Elemental Distance

hypervolume for fine resolution. In the fifth step, the Elemental Distance hypervolume

for fine resolution is partially filled on the projected cells. In the final step, the optimal

iQID Q2D Q3I0 QO QJ oO

Filled cell

SOptimal warp
path

I I

t

4I®
Elemental Distance
hypervolume (D)

1. Compute the Elemental
Distance hypervolume fully
2. Find the optimal warp path

Elemental Distance
Hypervolume (D)

x

Figure 3-1: Diagram of DTSW

Target
video

Que
video

·

Ii S -•

I

warp path for fine resolution is computed based on the filled cells in the Elemental

Distance hypervolume. In this way Multiscale DTSW computes the path constraints

conceptually similar to the Sakoe-Chuba Band [22] and the Itakura Parallelogram [9]

but based on the input data.

Target @ n @] F1

video L C. C0 0. J

n il®
Y A •r•T:i ; 0'•-• j j

II I 15

S i J i ume.(SDistance
I I penvidume (D)

Y)X

O Empty cell i

Filledcell

Optimal warp i J i
path I' LJ J- A

Elemental Distance hypervalurne ()
hpervolume (D)__x

Figure 3-2: Diagram of Multiscale DTSW with optimal level = 2, r, = 0, rt = 0

By comparing the two diagrams, we expect that the total computation of Multi-

scale DTSW to be less than of DTSW due to a great computational saving for the
Elemental Distance hypervolume computation at fine resolution. The details about
the total computation of Multiscale DTSW can be found in Section 3.2.

1. Downsample the target and query videos
2. Compute the coarse resolution Elemental
Distance hypervolumefully
3. Find the optimal warp path at coarse
resolution
4. Project the optimal warp path to fine
resolution Elemental Distance hypervolume
5. Compute the fine resolution Elemental
Distance hypervolume partially
6. Find the optimal warp path at fine
resolution

h: rvotume (D)

The next section discusses the Multiscale DTSW algorithm in more details.

3.1 Multiscale DSTW Algorithm

Algorithm 3.1 summarizes the Multiscale DTSW algorithm in a pseudocode. Figure 3-

3 depicts the flowchart of the Multiscale DTSW algorithm.

First, Multiscale DTSW computes the optimal level and radii based on the size

of the input videos and a relaxation radius that a user wants. The optimal level is

the number of resolution levels that minimizes the total computation of Multiscale

DTSW. The optimal level of three means that there are three levels in Multiscale

DTSW. At level 1, the full DTSW is applied. For level 2 and level 3, the optimal

warp path is obtained by refining the projected warp path from lower level. At level

1, the input videos are downsampled twice in time and space dimensions. At level

3, there is no downsampling on the input videos. A relaxation radius is a parameter

that determines how similar the solution of Multiscale DTSW to the solution of

DTSW. Based on relaxation radius and the size of the input videos, Multiscale DTSW

computes radii: rs and rt. Variable rs is a radius that determines how big the search

region in space dimension that Multiscale DTSW searches for the optimal warp path

around the projected warp path. Variable rt is a radius that determines how big

the search region in time dimension that Multiscale DTSW searches for the optimal

warp path around the projected warp path. The bigger the relaxation radius is, the

more similar the solution of Multiscale DTSW to the solution of DTSW. To obtain a

similar solution to DTSW, the search region for the optimal warp path in Multiscale

DTSW must be big. Note that the search region of DTSW is the full hypervolume

while the search region of Multiscale DTSW is a subset of the hypervolume. Hence,

for big relaxation radius, the radii (rt and r,) are also big.

Second, the input videos are downsampled in time and space dimensions accord-

ing to the computed optimal level. Third, the full DTSW is applied to the coarsest

resolution input videos. For the subsequent levels (if the optimal level is not equal to

one), Multiscale DTSW projects the optimal warp path found at the current resolu-

Algorithm 3.1 Multiscale DTSW
Input:
C - a target video
Q - a query video
rr - relaxation radius
bx - restriction in horizontal change in the space dimension
by - restriction in vertical change in the space dimension

Output:
WarpPath - the optimal warp path
S - the similarity measurement between the target and query videos

[optimal_level, radii] = ComputeOptimalLevel(C,Q,rr)

level = 1
[C_downsample, Q_downsample] = Downsample_video (C, Q, optimal_level,
level)
[WarpPath, S] = FullDTSW(C_downsample, Qdownsample, b,, by)

for level = 2 to optimallevel do

prevS = S
[C_downsample, Q_downsample] = Downsamplevideo (C, Q, optimal_level,
level)
[Predicted_WarpPath] = UpsampleWarpPath(WarpPath)

[WarpPath,S] = PartialDTSW(C_downsample, Q_downsample,
Predicted_WarpPath, radii, b,, by)

if Compare(prev_S,S) == true then
break;

end if

level - level + 1

end for

return WarpPath, S

tion to finer resolution Elemental Distance and Cumulative Distance hypervolumes.

Multiscale DTSW then fills in the finer resolution hypervolumes only at the projected

path or cells. The optimal warp path for finer resolution is recomputed based on the

filled cells in the hypervolumes. The process of projecting the optimal warp path to

finer resolution and recomputing the optimal warp path is repeated until Multiscale

DTSW reaches the optimal level.

The levels in Multiscale DTSW are numbered from one to the optimal level. The

level refers to the resolution level in Multiscale DTSW. If the optimal level is five, the

levels in Multiscale DTSW are numbered as 1, 2, 3, 4, and 5. At level 1, the input

videos are downsampled to the coarsest resolution. At level 4, both input videos are

downsampled once. And at level 5, there is no downsampling on the input videos.

Level 5 is for the finest resolution.

The downsampling multiplier of the input videos in the time and space dimensions

may not necessarily be two. It depends on the speed and the spatial change of the

action in the videos. If the speed of the action in the videos from frame to frame

is slow, then Multiscale DTSW will downsample the videos in the time dimension

by a multiplier of four or eight at each level. The downsampling multiplier in the

space dimension is independent to the downsampling multiplier in the time dimension.

The downsampling multiplier in the space dimension depends on how far the spatial

change of the action in the videos from frame to frame. If the spatial change is

big, then Multiscale DTSW will downsample the videos in the space dimension by a

multiplier of four or eight at each level. In this research, the downsampling multiplier

in the time and space dimensions is two. All equations in this thesis are based on

the assumption that the downsampling multiplier in the time and space dimensions

is two.

Unlike FastDTW [23], that performs the multiscale approach until the coarsest

possible resolution, Multiscale DTSW performs the multiscale approach only up to the

optimal level (the number of resolution levels that minimizes the total computation

of Multiscale DTSW). More explanation about the optimal level can be found in

Section 3.3.1.

Proe t optimal warp
to finer resolution

Figure 3-3: Flowchart of Multiscale DTSW

The similarity measurement (S) between two videos (a query and target video)

with a length of I and J frames, respectively, is defined by

Cum(J, I, XK, YK)
I+J

(3.1)

The smaller the value of S is, the more similar the two videos are. DTSW and

Multiscale DTSW are used to evaluate the similarity between the two input videos.

Figures 3-4 to 3-7 shows the S at each level of Multiscale DTSW's execution in

comparing the video of karate punch moves, horse racing, heart valve opening and

closing, and palm opening and closing. These videos can be found in Appendix A.

As can be observed from the figures, as the level of Multiscale DTSW increases (as

downsampling decereases), the value of S converges. The higher the level is, the less

number of downsampling is applied to the input videos. The highest level is for the

finest resolution and level 1 is for the coarsest resolution. The level at which the value

of S converges varies from one set of videos to another set of videos. Therefore, we

cannot predict or preset at which level the value of S will converge.

1 1.5 2 2.5 3 3.5
level

4.5 5 5.5 1

Figure 3-4: Similarity at
karate punch videos

each level of Multiscale DTSW's execution in comparing the

In some cases, even though Multiscale DTSW has reached the optimal level, the

1

9

8

7

6

5

4

.3

.2

.1(

0.

0.

0.

0.

(1) 0.

0.

0

0.

0.

0

4

I

1.5 2 2.5 3 3.5
level

4 4.5 5 5.5 6

Figure 3-5: Similarity at each level of Multiscale DTSW's execution in comparing the
horse racing videos

1 1.5 2 2.5
level

3 3.5 4

Figure 3-6: Similarity at each level of Multiscale DTSW's execution in comparing the
heart valve videos

S

S

S

I

0.08

0.06

R

I I I I I I I I I

n . . I

F

E

I I I I

0.18

0.16

0.14

0.12

C) 0.1

0.08

0.06

0.04

0.02

0

ul 1. 2 2. 3 .

1 1.5 2 2.5 3 3.5 4
level

Figure 3-7: Similarity at each level of Multiscale DTSW's execution in comparing the
palm opening and closing videos

value of S have not yet converged. Depend on whether we want an accurate or fast so-

lution, we will decide if we want to continue running the Multiscale DTSW algorithm

until the value of S converges or to stop when Multiscale DTSW reaches the optimal

level. In this research, we chose to execute the Multiscale DTSW until it reaches the

optimal level. From the experiments we conducted, by using this approach, the solu-

tion obtained by Multiscale DTSW is still within a good approximation (5% error) of

the solution found by DTSW. The experimental result can be found in Section 3.4.

We use the optimal level as hard stop but check for early convergence to reduce

the total number of computations, Multiscale DTSW stops and returns the value of

S and the optimal warp path found so far once it detects that the value of S has

converged (as shown in Figure 3-3). When the value of S has already converged, we

are confident that even if we continue running the Multiscale DTSW algorithm until

the optimal level, the value of S will not be substantially different and will not affect

our conclusion on the similarity of the two input videos.

-hIJ L

I

3.2 Complexity of Multiscale DTSW

Assume that I, J, X, and Y in the D and Cum hypervolumes are all equal to N;

then the time and space complexity of Multiscale DTSW are analyzed as follows.

3.2.1 Time Complexity

* Building hypervolumes

The Elemental Distance Hypervolume (D) and Cumulative Distance Hypervol-

ume (Cum) are computed at each level, but the hypervolumes are not fully

filled. The hypervolumes are partially filled based on the projected warp path

from the coarser resolution optimal warp path. In addition, Multiscale DTSW

also fills in any cells within rt cells away from the projected path in the time

dimension and r, cells away from the projected path in the space dimension.

The parameters rt and r, are the radii in the time and space dimensions that

are set based on the relaxation radius specified by a user. Variables rt and r,

determines how big the search region for finding the optimal warp path around

the projected warp path is. The solution of Multiscale DTSW is more likely to

be similar to the solution of DTSW when the search region is big. Therefore,

the selection of the value for rt and r, depends on how similar a user wants the

solution of Multiscale DTSW to the solution of DTSW. More explanation of rt

and r, can be found in Section 3.3.2

Figures 3-8 to 3-10 depicts the three basic projections of a warp path to finer

resolution hypervolume. These basic projections are the same for both the time

and space dimensions. The dark gray cells in the figures are the projected

cells from the optimal warp path for coarser resolution. The light gray cells

are the additional cells that are added to the computation of the hypervolumes

based on rt or r,. Assume that the downsampling multiplier in time and space

dimensions is two, then for a horizontal and vertical warp path, a cell in the

warp path is projected into four cells at the finer resolution hypervolume. If

the downsampling multiplier in the space dimension is a and the downsampling

multiplier in the time dimension is b, then each cell is projected into a x b cells.

For a diagonal warp path, each cell projected is into four cells plus additional

cells to smooth the connection among the projected cells on each axis.

N/2 N

j
j

i

j Additional cells

* Projected cells

i I I I I I I I I

Figure 3-8: Projection of a horizontal warp path to finer resolution hypervolume with
radius = 1

N/2

1

] Additional cells

Projected cells

rt) 1

Figure 3-9: Projection of a vertical warp path to finer resolution hypervolume with
radius = 1

Figure 3-11 shows an example of projecting a warp path to finer resolution

hypervolume in the time dimension. From Figures 3-8 to 3-11, we observe that

the number of filled cells in the finer resolution hypervolumes depends on the

shape of the projected warp path. In the worst case, Multiscale DTSW will fill

most of the cells of the finer resolution hypervolumes if the projected optimal

warp path is a straight diagonal path in the time dimension. From Figure 3-10,

52

t-l
i

7

N/2 N

j

j

SAdditional cells

I Projected cells

Figure 3-10: Projection of a diagonal warp path to finer resolution hypervolume with
radius = 1

we can see that each column at finer resolution hypervolume (except the first

and last three columns) has three projected cells and 2 x rt cells on each side

of the projected cells filled.

N/2 N

D Additional cells

Projected cells

Figure 3-11: Projection of a warp path to finer resolution hypervolume in the time
dimension with rt = 1

Assume that all columns have three projected cells and 2 x rt cells on each

side of the projected cells filled. If the length of the time dimension of the

hypervolumes at a level is equal to N, then in the worst case, the number of

filled cells in the time dimension of each hypervolume at that level is

N x ((2 x 2 x rt) + 3) = N(4rt + 3). (3.2)

The length of each dimension of the hypervolumes at each level is

V)m=optimallevel-1 N N N

2m =0 == 2 '22'23'... (3.3)

Therefore, the total cost of building each hypervolume in the time dimension

for all levels is

optimal_level-1

2 "N(4rt+3) = N(4rt+3)+ -•(4rt+3)+ N(4rt+3)+ (4rt+3)+....
m= o

(3.4)

Assume that the optimal level approaches infinity, then the series in Equa-

tion 3.4 is similar to the series

1 1 1 1 1
-= 1 +-+ + + +... = 2. (3.5)2m 2 22 23 24

m=o

Multiplying Equation 3.5 and Equation 3.2 yields

optimallevel-1
N N N
2mN (4rt + 3) = N(4rt + 3)+ - (4rt + 3) + (4rt + 3) + .

m=2 22 (3.6)

= 2N(4rt + 3).

In total, for each hypervolume, Multiscale DTSW needs 2N(4rt + 3) computa-

tions to build each hypervolume in the time dimension.

In the space dimension, there are two components, x and y, and Multiscale

DTSW separately projects the optimal warp path from coarser resolution to

finer resolution in the x and y dimensions. Two examples of projecting the

optimal warp path in the x and y dimensions are shown in Figure 3-12 and

Figure 3-13. Similar to the projection in the time dimension, in the worst case,

the hypervolumes will be filled the most when the projected warp path is a

straight diagonal path as shown in Figure 3-10. At the finer resolution, each

column (except the first and last three columns) has three projected cells and

2 x r, cells on each side of the projected cells filled. Assume that the first and

last three columns also have three projected cells and 2 x r8 cells on each side

of the projected cells filled. Then, for each column of the hypervolumes in the

x or y dimension, 4r8 + 3 cells are filled.

N/2

I I I I I I I I

Figure 3-12: Projection of a warp path to finer resolution hypervolume in the x
dimension with r, = 1

N/2

P

D Additional cells

Projected cells I I I I. I

Figure 3-13: Projection of a warp
dimension with r, = 1

path to finer resolution hypervolume in the y

Each column in the x or y dimension is the x or y axis of a cell in the time

dimension. Thus, for each filled cell in the time dimension of the hypervolumes,

4rs + 3 cells in the x dimension and 4r, + 3 cells in the y dimension are also

filled.

P

D Additional cells

* Projected cells

•t

Combining the time and space dimensions, Multiscale DTSW needs

2N(4rt + 3) x (4rs + 3)2 (3.7)

computations to build each hypervolume. Therefore, the total computational

cost to build the Elemental Distance hypervolume and Cumulative Distance

hypervolume is

2 x 2N(4rt + 3) x (4r, + 3)2 = 4N(4rt + 3)(4r, + 3)2 . (3.8)

* Searching for the optimal warp path

Multiscale DTSW needs to search for the optimal warp path at each level. In

the worst case (Equation 2.7), the optimal warp path is of length I + J =

N + N = 2N, where N is the length of the time dimension at each level. For

each element of the optimal warp path in the time dimension, Multiscale DTSW

needs to compare b, x by elements in the space dimension. Thus, the cost of

computing the optimal warp path is

2N x b, x by (3.9)

at each level. To sum the cost of searching for the optimal warp paths for all

levels, we multiply Equation 3.9 and Equation 3.5:

2 x 2N x bx x by = 4N x b, x by. (3.10)

* Projecting warp path

At each level, except the lowest level (level=l), Multiscale DTSW needs to

project the optimal warp path from coarser resolution to finer resolution. The

total computations required for projecting the optimal warp path at one level in

the time dimension (assuming that the length of the time and space dimensions

at that level is N) is 2N. Likewise, the computations required for projecting

the optimal warp path at one level in the space dimension is 4N: 2N in the

x dimension and 2N in the y dimension. Therefore, the total computations

required for projecting the optimal warp path at one level is

2N + 2N + 2N = 6N. (3.11)

The total computations required for projecting the optimal warp paths for all

levels can be computed by multiplying Equation 3.11 and Equation 3.5:

2 x 6N = 12N. (3.12)

The total time complexity of Multiscale DTSW can be computed by summing Equa-

tion 3.12, Equation 3.10, and Equation 3.8:

4N(4rt + 3)(4rs + 3)2 + (4N x bx x b,) + 12N. (3.13)

3.2.2 Space Complexity

Multiscale DTSW needs to store the Elemental Distance and Cumulative Distance

hypervolumes. The space complexity of storing the hypervolumes is the same as the

time complexity of building the hypervolumes (Equation 3.8): 4N(4rt + 3)(4r, + 3)2.

Multiscale DTSW also needs to store the optimal warp path at each level. At each

level, the optimal warp path consists of four elements (i, j, x, y), and the longest

optimal warp path is 2N long. Therefore, the total space needed to store the optimal

warp path at each level is

4 x 2N = 8N. (3.14)

The total space needed to store the optimal warp paths for all levels is computed by

multiplying Equation 3.14 with Equation 3.5:

2 x 8N = 16N. (3.15)

Therefore, the total space complexity is

4N(4rt + 3)(4rs + 3)2 + 16N. (3.16)

In conclusion, Multiscale DTSW has O(Nrtr2) time and space complexity. In the

best case, when rt and rs are relatively much smaller than N, Multiscale DTSW has

linear time and space complexity (O(N)).

3.3 Analysis of Multiscale DTSW Algorithm

In this section, we describe the time complexity of Multiscale DTSW with n levels in

more details. We then explain about the optimal level and relaxation radius followed

by the efficiency of Multiscale DTSW.

The details of the total time complexity of Multiscale DTSW with n levels are

elaborated as follows. As explained before, our convention is that level 1 is for the

coarsest resolution and level n is for the finest resolution.

Computational Cost at the Coarsest Resolution (Level 1)

At the coarsest resolution, Multiscale DTSW needs to perform the full DTSW

algorithm, or Multiscale DTSW needs to compute every cells in the coarsest

resolution hypervolumes. The computational cost of Multiscale DTSW at the

coarsest resolution is the computational cost of building the hypervolumes and

the cost of searching for the optimal warp path. The length of each dimension

of the hypervolumes at level=1 is N . Therefore, the computational cost is

2 x (+ 2 bxby. (3.17)

Variables bx and by are the maximum allowable changes in the x and y dimen-

sions of the optimal warp path between a frame and its adjacent frame. They

are constant for each set of input videos.

* Computational Cost at Resolution other than the Coarsest Resolu-

tion (Level 2...n)

- Based on Equation 3.7, the total computational cost of building the Ele-

mental Distance and Cumulative Distance hypervolumes for all the levels

except level one is

1 1
2(4rt + 3)(4rs + 3) 2 x N(1 + I + + ...) .

2 22 2n-2
(3.18)

- Based on Equation 3.9, the total computational cost of finding the optimal

warp path for all the levels except level one is

1 1 1
2 x b x by x N(1 + - + + ...).2 22 2n-2 (3.19)

- Based on Equation 3.11, the total computational cost of projecting the

optimal warp path from coarser resolution to finer resolution for all levels

except level one is
1 1 1

6N(1 + + + ...).2 22 2n-2 (3.20)

Combining all together, the total computations of Multiscale DTSW with n

levels is

i=n-21

i=0 i
Cost(n) = 2 (2"1) + 2 (221) bxby + 2(4rt + 3)(4rs + 3) 2 N

(i=n - 2 i=n-2

2bxbyN : + 6N :i
-i=0 \ i=0

= 2) +2 (+) bby +

\i2i=n- 2 i -(2N(4rt + 3)(4r, + 3)2 + 2bxbyN + 6N).i=O 2i
(3.21)

Figure 3-14 shows the plot of the total computations versus number of levels of

Multiscale DTSW based on Equation 3.21 for N = 100 and rt = r, = {5, 10, .. , 30}.

X rt and rs=5x102.5

. 2

:1.5
E

0.5

0
0 5 10 15 20

0

CL

E
8
.,.,

0 5

number of levels number of levels number of levels

0

CL

E
0
0

0

number of levels number of levels number of levels

Figure 3-14: Total computations versus number of levels of Multiscale DTSW in
comparing two videos with the length of each dimension of the Elemental Distance
and Cumulative Distance hypervolumes (N) equal to 100 and r, = rt = {5, 10, 15,
20, 25, 30}

3.3.1 Optimal Level

From Figure 3-14, we can observe that the minimum total computation is not always

achieved by running Multiscale DTSW with many levels of resolution. It may be

more costly for Multiscale DTSW to use n + 1 levels than to use n levels. We call the

number of levels that minimizes the total computation as optimal level. We run the

Multiscale DTSW with the optimal level of resolution to fully explore the efficiency

of Multiscale DTSW.

D

The optimal level can be computed by solving the following optimization problem.

obj = min Cost(n)

subject to n > 0 (3.22)

n Z+.

The index n where Cost(n) is equal to the value of obj is the optimal level.

The optimal level can also be computed by using greedy approach. In greedy

approach, we first compute C(1), then we compare its computation with C(2). If

C(2) is higher than C(1), we stop searching and the optimal level is one. However, if

C(2) is smaller than C(1), we continue searching by comparing C(2) with C(3), C(3)

with C(4), C(4) with C(5), and so on until we find that C(n+1) is greater than C(n)

and the optimal level is n.

There are some applications that always compare two videos with a fixed length of

frames or a little variation in the length of the videos. For example, the manufacturing

monitoring system. The target video is a video of machinery performing one cycle

of manufacturing process, and because the target video is only one, the length of the

target video is constant. The query video is a real time video of machinery performing

one cycle of manufacturing process. Because the amount of time to perform a cycle

of manufacturing process is almost fixed, there is no much variation in the length of

the query video. Therefore, in these type of applications, it is useful to predefine the

optimal level to avoid repeating the computation of optimal level over and over again.

3.3.2 Relaxation Radius

Because Multiscale DTSW does not search for all possible warp paths to find the

optimal warp path, we cannot guarantee that the optimal warp path found by Mul-

tiscale DTSW is the global optimal. To get a better accuracy, Multiscale DTSW

needs to search for more warp paths in addition to the warp path projected from

the coarser resolution optimal warp path. We have implemented this approach by

defining relaxation radius (rr). Relaxation radius determines the value of rt and r,.

Variables rt and rs determines the number of additional cells that Multiscale DTSW

needs to compute beyond those cells projected from the coarser resolution optimal

warp path. The bigger the value of rt or rs is, the more warp paths that Multiscale

DTSW considers, and the more confidence we have in the accuracy of the solution of

Multiscale DTSW.

We consider the solution of DTSW as the global optimal solution because DTSW

find the optimal warp path that has the minimum cost among all warp paths. The

more similar the solution of Multiscale DTSW to the solution of DTSW, the more

confidence we have in the accuracy of the solution of Multiscale DTSW.

In practice, we may not need to compute the most optimal warp path. We may

only want to get a rough idea if two videos are alike. Hence, we can set the rt and

r, to be small, and Multiscale DTSW gives the answer in a much shorter time than

DTSW. If rt and r, are relatively much smaller than N, then Multiscale DTSW

will have O(N) time and space complexity while DTSW has O(N 4) time and space

complexity.

For a more accurate solution, we set large values for rt and r,. The bigger the

rt and r, are, the more computation Multiscale DTSW requires. Multiscale DTSW

may become more computationally expensive than DTSW when rt and r, are very

large.

We want to analyze for which values of rt and r, that Multiscale DTSW requires

more computations than DTSW. We call the value of such radius as r* for the radius

threshold in the time dimension and r* for the radius threshold in the space dimension.

If we want rt's value to be greater than r* and rs's value to be greater than r*, then

we should use DTSW instead of Multiscale DTSW. On the other hand, when rt is

smaller than r* or rs is smaller than r*, then we should use Multiscale DTSW instead

of DTSW.

From Figure 3-14, we can observe that at rt = r, = 25 and rt = r, = 30, using

one level in Multiscale DTSW (or DTSW) has less computations than using more

than one level in Multiscale DTSW. We can also observe that for certain values of rt

and rs, if the total computation of Multiscale DTSW with two levels is more than of

Multiscale DTSW with one level (DTSW), then the total computation of Multiscale

DTSW with three or more levels will also be greater than the total computation

of Multiscale DTSW with one level. In other words, if the total computation of

Multiscale DTSW with two levels is greater than of Multiscale DTSW with one level

(DTSW), we can assure that the total computation of Multiscale DTSW with any

levels other than one will be greater than of Multiscale DTSW with one level (DTSW),

and therefore, we should use DTSW for such rt and rs.

Hence, we can determine whether we should use DTSW or Multiscale DTSW

based on the comparison of the complexity of Multiscale DTSW with two levels and

of Multiscale DTSW with one level. We can find r* and r* by computing the smallest

rt and r, such that the computation of Multiscale DTSW with two levels is greater

than of Multiscale DTSW with one level.

Let A1 = Cost(2) - Cost(1). Hence,

A, = 2 i + 2 (b)by + 2N(4rt + 3)(4rs + 3)2 + 2Nbxby + 6N - (2N 4 + 2Nbxby)

= 2)- N 4 + 21 - 1)(Nbxby) + 2N(4rt + 3)(4r, + 3)2 + 2Nbxb, + 6N

= 2 N 4 - Nbxby + 2N(4rt + 3)(4r, + 3)2 + 2Nbxby + 6N

= -) N 4 - Nbvb + 2N(4rt + 3)(4r, + 3)2 + 2Nbxby + 6N

(3.23)

We are looking for smallest rt and r, such that A1 > 0. In other words, we are looking

for smallest rt and rs that satisfy

A, > 0
150

2N(4rt + 3)(4rs + 3) 2 > 8N 4 + NbxbY - 2N(bxb, + 3)
18 15(3.24)

(4rt + 3)(4r, + 3)2 2 (15N3 + bxb, - 2(bxb, + 3) .-2 8

Variables r* and r* are dependent variables. If we let rt to be a constant, then we

can compute r* analytically from Equation 3.24 or r* is the smallest rs that satisfies

(/I N3 + bb, - 2(bxb, + 3))
(4r + 3) 3 (3.25)

1/(L5-N a +bxby-2(bxby +3))~ - 3

rs 4rt+3

4

If we let rs to be a constant, then we can compute r* analytically from Equation 3.24

or r* is the smallest rt that satisfies

5(~ N3 + bxb, - 2(bab, + 3))
(4rt + 3) > 2 8

(4r, + 3)2 (3.26)
(N3+bxb-2(bby+3)) 3 (3.26)

rt > (4rs+3) 2

4

Otherwise, if we let rt and r, to be equal, then the value of r* and r* is equal to the

value of r that satisfies

(4r + 3) Ž 15N(4r + 3) > 3 8 N3+ bxby - 2(bxby + 3)

(3.27)
(N + bb, - 2(bb + 3)) -3

r >
4

We can also compute r* and r* from Equation 3.24 if we let rt = 2 x rs or any other

equation governing the relationship between rt and r,.

In summary, if we know the relationship between rt and rs or if we fix rt or r, we

can compute r* and r* from Equation 3.24.

Let rr be a variable for the probability of the solution of Multiscale DTSW being

similar to the solution of DTSW. The relaxation radius of 1 means that Multiscale

DTSW guarantees that the solution of Multiscale DTSW is exactly the same as the

solution of DTSW. The relaxation radius of 0.8 means that the solution of Multiscale

DTSW has 80% probability of being similar to the solution of DTSW.

Based on the relaxation radius that a user wants, r, for the Multiscale DTSW

algorithm will be

, = rr x r*. (3.28)

Likewise, rt will be

rt = rr x r*. (3.29)

If a user wants the global optimal solution, rt will be equal to r* and r, will be

equal to r*. And since the both radii pass their corresponding thresholds (r* and

r*), Multiscale DTSW uses the full DTSW algorithm and hence, the user obtains the

global optimal solution.

In the case where a user inputs certain values for rt and rs instead of a relaxation

radius, Multiscale DTS substitutes the value of rt and rs into Equation 3.24 and

decides if Multiscale DTSW will use DTSW (Multiscale DTSW with one level) or

Multiscale DTSW with more than one level.

Figure 3-15 shows the optimal level of Multiscale DTSW in comparing videos with

N = 100 versus relaxation radius (rr) = {0...1}. The graph looks like a step function.

When the relaxation radius is small, the optimal level is big. It means that Multiscale

DTSW can use many levels of resolution while still reducing the total amount of

computations required. However, when the relaxation radius is big, the radius will be

big, and the hypervolumes at the finest resolution is almost full. Multiscale DTSW

can only downsample the input videos to coarser resolution if the total computations

at the coarser resolution is still less than the amount of computations needed for the

empty cells of the finest resolution hypervolumes. Since the radius (rt or r,) is big,

the hypervolumes at the coarser resolution is also almost full and the computational

cost is expensive. Therefore, it is not efficient to use many levels in Multiscale DTSW

when the relaxation radius is big.

3.3.3 Multiscale DTSW Efficiency

The time complexity of Multiscale DTSW is computed based on the total number of

computations required and we normalize it by dividing it with the time complexity

of DTSW. The normalized time complexity ranges between 0 and 1. The normalized

5

4.5

•4

oaa 3

2.5

2

1.5

1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

rr

Figure 3-15: Optimal level versus relaxation radius of Multiscale DTSW in comparing
two videos with N=100

time complexity cannot go beyond one since when Multiscale DTSW is more compu-

tationally expensive than DTSW, we will use DTSW. Therefore, the maximum value

for the normalized time complexity is one.

Figure 3-16 shows the plot of the normalized time complexity of Multiscale DTSW

in comparing two videos with various lengths and relaxation radius ranges between 0

and 1. We can see that the normalized time complexity plot lies below the diagonal

axis of the plot. This means that to obtain an x relaxation radius, Multiscale DTSW

needs less than x percentage of computational effort of DTSW.

Figure 3-17 shows the normalized time complexity of Multiscale DTSW in com-

paring videos with various lengths for relaxation radius = 0.5, 0.6, 0.7, and 0.8. The

figure shows that for a constant relaxation radius, the normalized time complexity of

Multiscale DTSW is getting smaller and smaller as N is getting bigger and bigger.

The time complexity of Multiscale DTSW is O(Nrtr2). If we fix rt and rs, we

can assume that the time complexity of Multiscale DTSW is O(N). We normalized

it with the time complexity of DTSW, which is O(N4). Therefore, the normalized

time complexity of Multiscale DTSW is ((N) = 0 ('). Therefore, as N is getting

bigger, the normalized time complexity of Multiscale DTSW is getting smaller. This

- -

- ------

- *************

--------------------- -

-

N=100
- total computatation
- - - diagonal line

0 0.2 0.4 0.

1

08. 0.6E
0.6

E
0.4

CC 0.2

C 0I
0.8 1

0 0.2 0.4 0.6 0.8
rr

• total computatatio
- - - diagonal line. 0.8

E

0.6
E

.- 0.4 /

C 0.2

- ^ ,.

0 0.2 0.4 0.6

rr

N=1000

0 0.2 0.4 0.6 0.8 1
rr

Figure 3-16: Normalized time complexity of Multiscale DTSW versus relaxation ra-
dius in comparing two videos with N={50, 100, 500, 1000}

observation is useful since we want to apply Multiscale DTSW to large videos (large

N).

3.4 Experimental Result

Table 3.1 shows the experimental results of running Multiscale DTSW and DTSW

algorithms implemented in Matlab on various target videos (Appendix A) using an

IBM Pentium M laptop (1.3 GHz processor with 768 MB memory). The table shows

that for small relaxation radius, the execution time of Multiscale DTSW is much faster

than of DTSW. For big relaxation radius, the execution time of Multiscale DTSW is

almost equal or equal to of DTSW. These results comply with our analytical analysis

of the complexity of Multiscale DTSW and DTSW, which is O(Nrtr') and O(N 4),

respectively. For small relaxation radius, the value of r, and rt are relatively small

as compared to the value of N, so the complexity of Multiscale DTSW, which is

n

0 0.2 0.4 0.6
rr

N=500

E
8
0
E

0C-
C

0.8 1

I

-- ' · · · ·

N=50

rr = 0.5
, 0.6

E 0.5
o
o

E 0.4

a' 0.3

Cp

() 0.45
CL
E 0.4
0

a 0.35E
0.3

N 0.25

E 0.2

1

,1[

a 0.9
E
0

0.8

E
- 0.7
N
C 0.6

2 3

Log N

Figure 3-17: Normalized time complexity of Multiscale
relaxation radius = {0.5, 0.6, 0.7, 0.8}

DTSW versus log N with

O(Nrtr'), is smaller than of DTSW, which is O(N 4). Therefore, the execution time

of Multiscale DTSW is much faster. For large relaxation radius, O(Nrtr2) could be

as big as O(N 4), and therefore, the execution time of Multiscale DTSW is almost

equal to of DTSW.

Table 3.2 shows the normalized execution time for the corresponding execution

time in Table 3.1. To obtain a normalized execution time, we divided the execution

time with the corresponding execution time of DTSW.

Table 3.3 shows the comparison of error of Multiscale DTSW in comparing the

video sets in Table 3.1. The error is computed as

%Error = ISMultiscaleDTSW - SDTSW I 100%.
SDTSW

(3.30)

For a relaxation radius of at least 60%, the error of Multiscale DTSW is less than

5%, except for the random video. The large error in the results of the random

68

4 5 1 2 3

Log N

rr= 0.8
X
a-
E
oo

E

E.N
0
C

2 3

2 3

Log N

rr = 0.7

4 5

4 5
Log N

I I ·

rr = 0.6

b

1

Table 3.1: Comparison of execution time of DTSW and Multiscale DTSW for various
relaxation radii on various sets of video, running on an IBM Pentium M laptop (1.3
GHz processor with 768 MB memory)

Karate punch

Random

Horse racing

Palm opening

and closing

Person

Walking

Dimension

40 x 46 x 8 x 11

40 x 46 x 16 x 21

41 x 45 x 12 x 7

81 x 89 x 26 x 13

rr = 0.4

115.57

488.7

69.17

1041.34

16.69

14.18

108.2

47.43

341.26

18.34

videos' similarity could be due to the randomness of the synthetic random video that

we developed. The random video (Appendix A) was designed by using a random

function in Matlab with several constraints that limit its variation from frame to

frame.

For the karate punch video set, we could achieve a 0% error for the Multiscale

DTSW solution with the execution time 0.21 of the execution time of DTSW.

Table 3.4 to Table 3.6 show the experimental results of running Multiscale DTSW

and DTSW implemented in Matlab on various target videos (Appendix A) using

a Gateway PC (3.4 GHz with 1 GB memory). The experimental results further

support the efficiency of Multiscale DTSW. With Multiscale DTSW, we can obtain

a comparison result with less than 0.78% error with an execution time of less than

6% of the the execution time of DTSW. By observing Table 3.5 and Table 3.2, we

can observe that the amount of computation saved by Multiscale DTSW for large

data (large dimensions) is more than the amount of computation saved by Multiscale

DTSW for small data (small dimensions). These experimental results support our

claim in Section 3.3.3 that the normalized time complexity of Multiscale DTSW is

getting smaller for bigger dimension videos for a constant relaxation radius. For the

37 x 25 x 7 x 7

30 x 27 x 37 x 13

60 x 53 x 73 x 26

43 x 38 x 14 x 6

85 x 75 x 30 x 10

24 x 13 x 70 x 36

Execution time of Multiscale DTSW in secondsExecution time

of DTSW

in seconds

344.02

1912.15

288.6

7619.94

73.64

88.13

1473.96

132.73

3020.36

1264.45

rr -= 0.2

109.35

291.6

56.61

641.39

12.93

12.91

83.79

37.03

227.29

12.12

rr = 0.6

167.2

698.44

138.7

1589.77

39.87

27.91

228.45

70.5

489.46

36.52

rr = 0.8

316.37

920.82

268.022

3431.14

71.15

57.33

606.7

129.94

1538.56

167.3

Table 3.2: Comparison of normalized execution time of Multiscale DTSW for various
relaxation radii on various sets of video, running on an IBM Pentium M laptop (1.3
GHz processor with 768 MB memory)

Normalized execution time of Multiscale DTSW
Video set Dimension

rr = 0.2 rr = 0.4 rr = 0.6 rr = 0.8

40 x 46 x 8 x 11 0.32 0.34 0.49 0.92
Heart valve

40 x 46 x 16 x 21 0.15 0.26 0.37 0.48

41 x 45 x 12 x 7 0.2 0.24 0.48 0.93
Karate punch

81 x 89 x 26 x 13 0.08 0.14 0.21 0.45

Random 37 x 25 x 7 x 7 0.18 0.23 0.54 0.97

30 x 27 x 37 x 13 0.15 0.16 0.32 0.65
Horse racing

60 x 53 x 73 x 26 0.06 0.07 0.16 0.41

Palm opening 43 x 38 x 14 x 6 0.28 0.36 0.53 0.98

and closing 85 x 75 x 30 x 10 0.08 0.11 0.16 0.51

Person walking 24 x 13 x 70 x 36 0.01 0.01 0.03 0.13

karate punch video, for the dimension of 41 x 45 x 12 x 7 and relaxation radius = 0.2,

the normalized time complexity is 0.2. However, for the same video set and relaxation

radius but with the dimension of 81 x 89 x 26 x 13, the normalized time complexity

is 0.08.

Figure 3-18 and Figure 3-19 show the execution time of Multiscale DTSW running

on a Gateway PC (3.4 GHz processor with 1 GB memory) for comparing the karate

punch videos with dimension = 81 x 89 x 26 x 13 and rt = r, = {5, 10, ..., 35}. We

can observe that the optimal level for Multiscale DTSW varies depending on the

configuration of rt and rs. It is not true that the more the number of levels that

Multiscale DTSW uses, the less computations that Multiscale DTSW requires. The

experimental results shown in these figures support our analytical result explained in

Section 3.3.1 and depicted in Figure 3-14.

For some videos, if we know that the low resolution videos are a good represen-

tation of the high resolution videos (no aliasing), we can fix the r, and rt for all

levels of Multiscale DTSW in comparing the videos. In our experiment, the karate

punch videos do not suffer aliasing when we downsample them. Therefore, we can

fix rt and r, for all levels of Multiscale DTSW. Figure 3-20 shows the execution time

of Multiscale DTSW and DTSW for various resolutions of karate punch videos with

rs=rt=5

1 2 3
number of level

r =rt=15

r =r=10S t

1 flfr
4 5 1 2 3

number of level

r=rt=20

4000

3500

3,000

1 2 3 4 5
number of level

1 2 3
number of level

Figure 3-18: Execution time of Multiscale DTSW running on a PC with 3.4 GHz
processor and 1 GB memory versus number of levels in comparing the karate punch
videos with dimension = 81 x 89 x 26 x 13 and rt = r, = {5, 10, 15, 20}

o 5000

._ 4000

E 3000

C 2000

o 1000
X

4 5

4 5

AL1,M)

~

INNl

4) -

I
1

3vv

rs=rt=25

1 2 3 4
number of level

rs=rt=35

1 2 3 4
number of level

o 4300.

.S 4200

E
4100

4000

390
1 2 3

2 3
number of level

Figure 3-19: Execution time of Multiscale DTSW running on a PC with 3.4 GHz
processor and 1 GB memory versus number of levels in comparing the karate punch
videos with dimension = 81 x 89 x 26 x 13 and rt = r, = {25, 30, 35}

. 4200

E 4000
:r
r 3800

3600
X

30 0AfE

.9 4300

E
4280

4260

0

4 5

A A,,E,

i-I "'"'l|II

41an

rs=rt=30
· nnn

I

3400

&wn · ·

1

I
t

Table 3.3: Comparison of error of Multiscale DTSW for various relaxation radii on
various sets of video, running on an IBM Pentium M laptop (1.3 GHz processor with
768 MB memory)

Error of Multiscale DTSW in percentage

rr = 0.2 rr = 0.4 rr = 0.6 rr = 0.8

40 x 46 x 8 x 11 15.8 15.8 3.67 0.02
Heart valve

40 x 46 x 16 x 21 5.28e10 5.28e10 0 0

41 x 45 x 12 x 7 11 8.95 0 0
Karate punch

81 x 89 x 26 x 13 4.5e5 0.01 0 0

Random 37 x 25 x 7 x 7 1e5 1e5 3.9e4 9.3e3

30 x 27 x 37 x 13 36.65 13.66 3.5 1.92
Horse racing

60 x 53 x 73 x 26 5.81 5.48 4.5 0

Palm opening 43 x 38 x 14 x 6 2.46 0 0 0

and closing 85 x 75 x 30 x 10 2.28e10 0.12 0.36 0

Person walking 24 x 13 x 70 x 36 10.75 10.48 1.47 0

Table 3.4: Comparison of execution time of DTSW and Multiscale DTSW for various
relaxation radii in comparing the karate punch and horse racing videos running on a
PC with 3.4 GHz processor and 1 GB memory

Execution time Execution time of Multiscale DTSW in seconds

Dimension of DTSW
rr = 0.2 rr = 0.4 rr = 0.6 rr = 0.8

in seconds

81 x 89 x 52 x 28 79771.64 4461.04 7209.61 13745.22 21044.25

162 x 177 x 26 x 13 24547.13 1566.77 2501.44 4900.59 7734.03

119 x 105 x 145 x 50 12034.59 331.59 952.03 2075.14 3260.30

r, = rt = 5. From the figure, we can observe that the time complexity of DTSW is ex-

ponential while the time complexity of Multiscale DTSW is linear. This observation

supports our analysis in Section 3.3.3 that for constant rt and rs, the time complexity

of Multiscale DTSW is O(N), while the time complexity of DTSW is O(N 4).

v

--- DTSW

•-Multiscale DTSW

I
I
I

I
I

I
I

I
I

I II
I

I

I

I

I
I

I

I

I I

I s

- ,'

- ss

-r

-r

s
- s

s

s
- s

I
s

- --- _,_ __

1 1.5 2 2.5 3 3.5 4
Multiple of dimension 16 x 5 x 1 x 11

Figure 3-20: Execution time of DTSW and Multiscale DTSW running on a PC with
3.4 GHz processor and 1GB memory in comparing the karate punch videos with
rs = rt = 5

t$uuu

7000

6000
()

5000

C
0 4000

3000X

2000

1000

n

___1

Table 3.5: Comparison of normalized execution time of DTSW and Multiscale DTSW
for various relaxation radii in comparing the karate punch and horse racing videos
running on a PC with 3.4 GHz processor and 1 GB memory

Normalized execution time of Multiscale DTSW
Video set Dimension

rr = 0.2 rr = 0.4 rr = 0.6 rr = 0.8

Karate punch 81 x 89 x 52 x 28 0.056 0.09 0.17 0.26

162 x 177 x 26 x 13 0.06 0.1 0.2 0.32

Horse racing 119 x 105 x 145 x 50 0.03 0.08 0.17 0.27

Table 3.6: Comparison of error of DTSW and Multiscale DTSW for various relaxation
radii in comparing the karate punch and horse racing videos running on a PC with
3.4 GHz processor and 1 GB memory

Horse racing

Error of Multiscale DTSW in percentage
Dimension

rr = 0.2 rr = 0.4 rr = 0.6 rr = 0.8

81 x 89 x 52 x 28 0.778 0 0 0

62x 177x26x 13 0 0 0 0

19 x 105 x 145 x 50 0.77 0.04 0 0

Chapter 4

Extension of Multiscale DTSW

The computational cost of Multiscale DTSW can be further reduced by using the

following techniques.

4.1 Multiscale DTSW with Eigenframes Implemen-

tation

4.1.1 Principal Component Analysis

Most of the query videos compared by Multiscale DTSW are videos of some sequence

of action. We expect small frame to frame changes in the query video. This suggests

that a small number of frames can be used to approximate the original query frames.

We use Principal Component Analysis (PCA), whose details can be found in the

literature [25, 26].

We focus on how the principal component analysis is used to reduce the compu-

tation in Multiscale DTSW. The use of PCA in DTSW is discussed in Anthony [1].

The details of computing the principal component can be found in [25, 26].

The principal components are the orthonormal basis set of the covariance of the

original data. The principal components are also the eigenvector of the covariance

matrix of the data. In the literature, the principal components for image analysis are

called the Eigenframes. The frames in the Eigenframes are ordered from the most

dominant frame to the least dominant frame. The most dominant frame represents

the majority of the variation in the query video, and the second most dominant frame

represents the second largest amount of variation in the query video.

The number of frames in the Eigenframes set is the same as the number of frames

in the query video. Assume that the query video is of length J frames, and the

set of frames of the query video = {Q1, Q2, Q2, 3..., QJ}. The set of Eigenframes =

{El, E2, E3, ... , Ej}. The sequence of original query frames can be reconstructed by

linearly combining all frames in the Eigenframes:

Q1 = ellE 1 + e12E 2 + e13E 3 + ... + ejEj

Q2 = e21E1 + e22 E 2 + e23E 3 + ... + e2JEj

Q = ej1E1l + eJ 2E 2 + eJ3E 3 +... + ejjEj

where emn is the projection coefficient of query frame m to Eigenframe n.

If we do not want to fully recover the original set of frames, but only an approxi-

mation to the original set, for example we only need to capture 90% of the variance

in the query video, the amount of frames in the Eigenframes used to reconstruct the

query frames can be reduced. For example, to capture 90% variation in the query

video, we only need P most dominant Eigenframes, P < J. The query videos can be

approximately represented as

Q1 ellE1 + e12E 2 + e13E 3 + ... + e 1pEp

Q2 e21E1 + e22E2 + e23E 3 + ... + e 2PE

Qj i ej1E1 + eJ2E 2 + eJ 3E 3 + ... + epEp

The less variance we chose to retain, the fewer the number of Eigenframes required.

4.1.2 Implementation of Eigenframes in Multiscale DTSW

Figure 4-1 depicts the DTSW algorithm in computing the Elemental Distance hyper-

volume. For two videos with a length of I and J frames, respectively, DTSW needs

to perform I x J normalized correlation operations to compute the hypervolume.

Normalized
,C•,'I IcorrelationCI

ance

Figure 4-1: Computing the Elemental Distance hypervolume in the DTSW algorithm

Figure 4-2 depicts the DTSW algorithm with the Eigenframes implementation.

The steps are as follows.

1. Decide the amount of variation in the query video to be captured in the Eigen-

frames representation.

2. Compute the Eigenframes of the query video as well as the projection coef-

ficients of the Eigenframes that are used to recover the query frames. If we

need P Eigenframes to capture the stated variance, then there are P projection

coefficients for each query frame.

3. Find the normalized correlation between each frame in the target video and

each of the P Eigenframes. This is (P x I) normalized correlation operations.

4. Compute the Elemental Distance hypervolume. Compute the hypervolume's

cells between frame Qj of the query video and frame Ci of the target video.

The algorithm linearly combines the normalized correlated frames between Ci

and the Eigenframes using the projection coefficient of the Eigenframes for

Kly

Qj. The amount of computation required is (P x X x Y) multiplications and

((P - 1) x X x Y) additions. Variables X and Y are the x and y dimensions of

each of the normalized correlated frames between the target video frames and

the Eigenframes.

I- Eigenframes ee42 --
e4
1 'I e42

rnffiriant n e* *
4 for query

I- ', 1 qL3 L. C±c ',~ ~ C I

Elemental
Distance

12 Hypervolume

e12
e l

12

-22

12 i

c4j I

CI
51

42
I----.

52

Figure 4-2: Computing the Elemental Distance hypervolume in the DTSW algorithm
with Eigenframes implementation

Assume that the total computation to compute the Eigenframes is A computa-

tions, then the total computation of the DTSW algorithm with Eigenframes imple-

mentation is

A + (P x I) normalized correlation operations+(P x X x Y) x (I x J)

multiplications+((P - 1) x X x Y) x (I x J) additions.

If we use a 100% variance, then P will be equal to J and the total computa-

tion becomes A + (J x I) normalized correlation operations+(J x X x Y) x (I x

J)multiplications +((J - 1) x X x Y) x (I x J) additions. Hence, if we use DTSW

algorithm with Eigenframes implementation, then the total computation will be

I

I
I
I m
I
I
I
I
I
I

It?~ ' ' --

Ill

1

Ll

II
II
II
II
I
II
I
I

I · ,
i el

~----

L -- - - - I

more than of DTSW algorithm. But if A + (J x X x Y) x (I x J) multiplication

+((J - 1) x X x Y) x (I x J) addition operations are relatively much smaller than

the computation of (J x I) normalized correlation operations, then the additional

computations are negligible.

Typically we use less than 100% variance, then P will be less than J. In general,

A + (P x X x Y) x (I x J) multiplication +((P - 1) x X x Y) x (I x J) addition

operations are less than (J - P) x I normalized correlation operations, then by using

Eigenframes implementation, we will save some computations.

4.1.3 Experimental Result

As discussed in the previous subsection, the execution time of DTSW using Eigen-

frames implementation in general is faster than of not using the Eigenframes method.

For simplicity, we will call the DTSW without Eigenframes implementation as DTSW

and DTSW with Eigenframes implementation as DTSWEF. Table 4.1 shows the nor-

malized execution time of DTSW and of DTSWEF in comparing the karate punch,

heart valve, and palm opening and closing videos. The normalized execution time is

computed by dividing the execution time with the corresponding execution time of

DTSW. Hence, the normalized execution time of DTSW is 1. The normalized execu-

tion time that is less than 1 means that the execution time is faster than the execution

time of DTSW. Similarly, the normalized execution time that is more than 1 means

that the execution time is slower than the execution time of DTSW. The experiment

results support the conclusion that the computation of DTSW can be reduced by

using Eigenframes implementation with a variance of less than 100%. In comparing

all of the videos, the normalized execution time of DTSWEF with a variance of less

than 100% is less than 1. With a 100% variance, the execution time of DTSWEF may

be slower than of DTSW, as shown in the execution time of DTSWEF in comparing

the palm opening and closing video.

Table 4.2 shows the error of the DTSWEF results as compared to the results of

DTSW. The error is calculated by subtracting the 3-D Euclidean distance between

the warped query video and the warped target video found using DTSW from the

Table 4.1: The normalized execution time of DTSWEF in comparing the karate
punch, heart valve, and palm opening and closing videos with the variance = {100%,
90%, 80%, 70%}_

Normalized execution Normalized execution time of DTSWEF
time of DTSW var=100 var=90 var=80 var=70

Karate punch 41 x 45 x 12 x 7 1 0.99 0.81 0.78 0.74

Heart valve 40 x 46 x 8 x 11 1 0.98 0.78 0.74 0.74

Palm opening 85 x 75 x 14 x 6 1 1.01 0.95 0.95 0.94
and closing

3-D Euclidean distance between the warped query video and the warped target video

found using DTSWEF. The error is then normalized by dividing the error with the

3-D Euclidean distance of the warped query video and the warped target video found

using DTSW.

Table 4.2: The normalized error of DTSWEF in comparing the karate punch, heart
valve, and palm opening and closing videos with the variance = {100%, 90%, 80%,
70%}

Normalized error Normalized error of DTSWEF
Video set Dimension

of DTSW var=100 var=90 var=80 var=70

Karate punch 41 x 45 x 12 x 7 0 0 -0.036 0.001 0.036

Heart valve 40 x 46 x 8 x 11 0 0 1.8e-3 2e-3 0.024

Palm opening 85 x 75 x 14 x 6 0 0 -0.013 -7e-3 0.021
and closing

The errors of DTSWEF in comparing the videos are less than 5% for the variance

of at least 70%. For palm closing and opening video, the errors are negative for the

variances of 90 and 80 percent. Similarly for the karate punch video with the variance

of 90%. This means that using the reduced representation of the query video, the

warped target video and the warped query video may become more similar than using

the full representation of the query video. For karate punch and heart valve videos,

we can achieve a 36% reduction in the execution time with less than 4% error in

the results. For palm opening and closing video, we can achieve 6% reduction in the

execution time with less than 3% error.

Figure 4-3 to 4-5 show the normalized execution time and normalized error for

comparing the karate punch, heart valve, and palm opening and closing videos by

using Multiscale DTSWEF. We set the variance to be 10%, 20%, 30%, ... , 100%. In

these experiments, we want to achieve at most 10% error in the results of Multiscale

DTSWEF. The corresponding variance and the normalized execution time are shown.

For the karate punch and palm opening and closing videos, we need at least 60%

variance. For the heart valve videos, we can use Eigenframes that capture 10%

variance of the original.

2.2

0 2

2 0.8

.t

(D 0.4

0.2

0-

0 -" 20 40 80 100
vanriance.

ft 'Cr

r- 0.65

0.6[

"O 0.55

I - .

Z o.45t _____I_ .

0 20 40 60 80 100
variance

Figure 4-3: The normalized error and normalized execution time in comparing the
karate punch videos using Multiscale DTSW with Eigenframes implementation and
various settings for the variance

Table 4.3 summarizes the normalized execution time and the normalized error of

DTSW, Multiscale DTSW, and Multiscale DTSWEF comparing the three example

videos with the constraint that the normalized error must be less than 10%. Because

the error and the execution time are normalized with the error and the execution

83

I

20 40 60 80 100
variance

a ji

0 20 40 60 80 100
variance

Figure 4-4: The normalized error and normalized execution time in comparing the
heart valve videos using Multiscale DTSW with Eigenframes implementation and
various settings for the variance

84

0.8

0

N
04

z 0.2

0

U.7 t

0.7

v 0.55

0.5Et- 0.5

Z 0.45

0 A

- -..............

20 ~ -40 60 8 "

20 40 90
variancd

20 40 60
vaiance

80 1(

80 100

Figure 4-5: The normalized error and normalized execution time in comparing the
palm opening and closing videos using Multiscale DTSW with Eigenframes imple-
mentation and various settings for the variance

0.12

0.1

0.08

-0 0.06

* 0.04
E

Z 0.02

0

U.U4

a 0.32

0.3
-o

0.29

z 0.28

0n 97

I!I

II
c/7

€.

g n II l ,

1

i

\ i

E

II q.%J%.

I0

time of DTSW, the normalized execution time and normalized error of DTSW are 1

and 0, respectively. For Multiscale DTSWEF, we chose the least amount of variance

that still meet the requirement of maximum 10% error.

Table 4.3: The normalized execution time and the normalized error of DTSW, Mul-
tiscale DTSW, and Multiscale DTSWEF in comparing the karate punch, heart valve,
and palm opening and closing videos with the constraint that the normalized error
must be less than 10%

DTSW Multiscale DTSW Multiscale DTSWEF

Normalized Normalized Normalized Normalized Normalized Normalized
Video set Dimension

error execution error execution error execution

time time time

Karate punch 41 x 45 x 12 x 7 0 1 0 0.5252 0.0482 0.4383

Heart valve 40 x 46 x 8 x 11 0 1 0 0.534 0.0242 0.4149

Palm opening
85 x 75 x 14 x 6 0 1 0 0.2878 0.0132 0.27

and closing

As shown in the table, the execution time of Multiscale DTSWEF is less than

of Multiscale DTSW, and subsequently, the execution time of Multiscale DTSW is

less than of DTSW. For karate punch and heart valve videos, the execution time of

Multiscale DTSW is about 50% of the execution time of DTSW, and the execution

time of Multiscale DTSWEF is about 40% of the execution time of DTSW. For the

palm opening and closing video, Multiscale DTSW only needs 29% of the DTSW's

execution time and Multiscale DTSWEF only needs 27% of the DTSW's execution

time. The computational saving on large x, y, and time dimensions videos is more

than the computational saving on smaller videos for Multiscale DTSW and Multiscale

DTSWEF. This is because the multiscale approach saves computations in the time

and space dimensions. And as explained in the previous chapter, the larger the

dimension of the videos, the more computational saving is achieved by using the

multiscale approach.

In conclusion, by using Multiscale DTSWEF, the computation of Multiscale DTSW

is further reduced without greatly compromising the results. Due to relatively small

number of computations that Multiscale DTSWEF needs, Multiscale DTSWEF is

suitable for video classification, whose details are discussed in the next chapters.

4.2 Multiscale DTSW with Control Points

Suppose that we know a few points in the Elemental Distance and Cumulative Dis-

tance hypervolumes through which the optimal warp path must pass through. For

instance, we know exactly which frames are the transitional frames between two dif-

ferent scenes in the target and query videos. A transitional frame in the target video

must match the corresponding transitional frame in the query video. Therefore, we

can assure that the points in the hypervolumes that represent the transitional frames

in the target and query videos must be part of the sequence of points of the optimal

warp path. We call such known information control points.

Then, based on boundary, temporal continuity, and bi-temporal casuality restric-

tions of DTSW, we predict the optimal warp path of the two videos in the time

dimension. An example is shown in Figure 4-6 . In order to obtain a predicted opti-

mal warp path in the space dimension, we follow the spatial continuity restriction of

DTSW (the spatial change from frame to frame is bounded) and apply linear interpo-

lation among the control points in the space dimension as illustrated in Figure 4-7. To

get a more accurate solution, Multiscale DTSW will also compute the cells that are

located at rt and r, cells away from the predicted path or cells in the computations

of the hypervolumes.

j

SKnown
points

Predicted
path
Additional
cells

Predicted
cells

Figure 4-6: Known-points-based prediction of a warp path in the time dimension

We have implemented a modification of Multiscale DTSW that uses the predicted

go

X

Known
points

-- Predicted path

D Additional
cells

Predicted
cells

Figure 4-7: Known-points-based prediction of a warp path in the space dimension

optimal warp path (based on control points) to estimate the optimal warp path at the

coarsest resolution. We called the modified Multiscale DTSW as Multiscale DTSW

with Control Points. The cells in the hypervolumes that are considered as the candi-

dates for the cells of the optimal warp path are called the predicted cells. Because we

have an estimation of where the optimal warp path lies, Multiscale DTSW with Con-

trol Points will only search for the optimal warp path on the predicted cells at the

coarsest resolution hypervolumes. Compared to Multiscale DTSW, which searches

the optimal warp path on all cells of the coarsest resolution hypervolumes, Multiscale

DTSW with Control Points has less computational cost.

The time complexity of Multiscale DTSW with Control Points is:

Cost(n) = 2(4rt + 3)(4r, + 3) 2N (i= +

i=n-1 i=n-2

2bxbyN E - + 6N I.
i=0 , i=0

Compare it with Equation 3.21 of Multiscale DTSW, the number of computations

I I I I I I I I
i

saved if we use control points is

Saving = 2 -1 2 (2(4rt + 3)(4r, + 3)2(4.2)
N4(4.2)

2_ 2 - N(4rt + 3)(4r, + 3)2)

2n-1 23(n-1)

Table 4.4 shows the computational cost of Multiscale DTSW and Multiscale

DTSW with Control Points for comparing the karate punch videos (Appendix A).

Both achieve the same optimal warp path at the finest resolution, but Multiscale

DTSW with Control Points executed faster than Multiscale DTSW.

Table 4.4: Comparison of execution time of Multiscale DTSW and Multiscale DTSW
with Control Points running on a Pentium M laptop with 1.3 GHz processor and 768
MB memory in comparing the karate punch videos

Videos set Dimension Execution time in seconds
Multiscale DTSW Multiscale DTSW with Control Points

targetl 41 x 45 x 12 x 7 175.62 172.45
target2 81 x 89 x 26 x 13 749.35 674.9
target3 81 x 89 x 52 x 28 7393.41 6855.46
target4 162 x 177 x 52 x 28 17572.48 14180.62

4.3 Multiscale DTSW with Level Jump

Figure 4-8 shows the optimal warp path for comparing the karate punch videos (Ap-

pendix A) at each level of the execution of Multiscale DTSW. Figure 4-9 depicts the

projection of the optimal warp path at each level to a common time axis. We can

observe that for some levels (level 2 and 4), the optimal warp path found is almost

the same as the optimal warp path found at its lower level (The lowest level is for

the coarsest resolution and the highest level is for the finest resolution). Therefore,

Multiscale DTSW can skip certain levels and project the optimal warp path to two

or three times finer resolution.

To find the similarity between two optimal warp paths from two different resolu-

tions, we must first project both optimal warp paths to a common axis. Then, the

Optimal warp path at level = 1
3

2

7

/

Optimal warp path at level = 4
25

20

15

10

5

n
0 10 20 30

Optimal warp path at level = 2
6

5

4

3

2

1
0 2 4 6

i

Optimal warp path at level = 5
50

40

30

20

10

0
0 20 40 60

i

Optimal warp path at level = 3
12

10

8

6

4

2

n
0 5 10 15

i

Optimal warp path at level = 6
100

80

60

40

20

0
0 50 100

Figure 4-8: The optimal warp paths of comparing the karate punch videos found by
using Multiscale DTSW at level = 1 to level = 6

-1 I

-

F

L

A

0 10 20 30 40 50
i

Figure 4-9: Projection of all optimal warp pathes of
videos found by using Multiscale DTSW at level=1 to

U6 70 BU 90

comparing the karate punch
level=6 onto a common axis

A

difference between the optimal warp paths is computed by the following equation.

i=N

TotaL-Warp-Diff = Wql (i) N Wq 2 (i)) (43)

where N is the length of the time dimension of the common axis. And Wql and Wq2

are the Wk(j)s of both optimal warp paths projected to a common axis, as shown

in Figure 4-10. In other words, the difference between two optimal warp paths is

defined as the summation of the absolute vertical differences between both optimal

warp paths projected to a common axis.

Warp path at Leel = 3 Warp path at LeveWi =4

Projection to common axis
Zb

20

5

Difference between the
warp paths in vertical
direction

0 5 10 15 20 25

N

Figure 4-10: The top left figure shows an example of the optimal warp path at
level=3. The top right figure shows an example of the optimal warp path at level=4.
The bottom figure shows the projection of both optimal warp paths to a common
axis. The difference between the two optimal warp paths is defined as the summation
of absolute vertical differences between both warp paths projected to a common axis
as shown in the shaded region in the figure.

We have implemented a modification of Multiscale DTSW that will skip some

20

15

10

S

0
0 5 10 15 20 25

,,

Difference between the
warp paths in vertical
direction

levels of resolution if Multiscale DTSW has detected that the optimal warp path at

some resolution and the optimal path at the finer resolution do not have substantial

change. We call the modified Multiscale DTSW as Multiscale DTSW with Level

Jump.

Figure 4-11 shows the flowchart of Multiscale DTSW with Level Jump. We de-

fine two threshold, thresholdl and threshold2. If TotalWarp.Diff is smaller than

thresholdl, then Multiscale DTSW with Level Jump skips two levels. Otherwise,

if TotalWarpDiff is smaller than threshold2, then Multiscale DTSW with Level

Jump will skip one level. Other than that, Multiscale DTSW with Level Jump will

continue to the next level.

Table 4.5 shows the execution time of DTSW, Multiscale DTSW, and Multiscale

DTSW with Level Jump in comparing the karate punch videos. All achieve the same

optimal warp path at the finest resolution, but Multiscale DTSW with Level Jump

executed faster than Multiscale DTSW.

Table 4.5: Comparison of execution time of DTSW, Multiscale DTSW, and Multiscale
DTSW with Level Jump in comparing the karate punch videos running on a Pentium
M laptop with 1.3 GHz processor and 768 MB memory

Videos set Dimension Execution time in seconds
DTSW Multiscale DTSW Multiscale DTSW with Level Jump

targetl 41 x 45 x 12 x 7 283.2 177.32 96.57
target2 81 x 89 x 26 x 13 7616.24 1794.87 1122.47

Multiscale DTSW with Level Jump can also be extended to use more than two

thresholds. However, because the value of the optimal level is relatively small, it is

quite unlikely that the algorithm is able to skip more than two levels.

4.4 Piece-wise Multiscale DTSW

To improve the result of Multiscale DTSW, we can divide a query and a target video

into several parts and then apply Multiscale DTSW on each portion independently.

After we find the optimal warp path, we warp each portion of the target video accord-

ing to the optimal warp path. We then combine each of these portions in common

Dowvnsm~l 2·id~os
in time and spa

(optimall ~~ievd- levetimies

Dowus5~anr1e V~i&
in time ans~td space~

(optirn~a11evl~- 1eve])im es

Figure 4-11: Flowchart of Multiscale DTSW with Level Jump

time and space axes. We call this method as Piece-wise Multiscale DTSW. By using

Piece-wise Multiscale DTSW, the warped target video is more similar to the query

video. However, Piece-wise Multiscale DTSW needs more computations. More de-

tailed explanation about Piece-wise Multiscale DTSW including the computational

cost and the warped target video can be found in Appendix B.

Chapter 5

Multiscale DTSW in Video

Classification Application

5.1 Video Classification Application

Because of its efficiency, Multiscale DTSW is applicable to video classification appli-

cation. In this research, we developed a video classification application that is based

on Multiscale DTSW. The video classification application classifies an unknown video

into one of the predefined classes: walk, skip, side, run, and jump. This video classi-

fication application determines if the action performed by the person in the unknown

video is a walk, skip, side, run, or jump action. We assume that the unknown video

represents one of these five actions, the application did not implement an exception

in case of the action in the unknown video does not belong to one of the five actions.

However, this could be easily done by setting a threshold. If the distance or difference

between the unknown video and all the videos in the database exceeds the threshold,

the classification result will show that the unknown video does not belong to one of

the classes.

In this research, we have four template videos for each class. Therefore, the total

number of videos in the database is 20 videos. The examples of the template videos

can be found in Appendix A. As most video classification applications [3, 20, 28], we

use the nearest neighbor procedure in determining the classification result. Figure 5-1

shows the steps in the video classification application. In the first step, the application

finds the distance or difference between the unknown video and each of the template

videos in the database. To find the distance, we will use DTSW, Multiscale DTSW

or Multiscale DTSWEF. In the second step, the application computes the average of

the distance between the unknown video and the template videos of each class. In

the final step, the application finds the minimum of the average distance among all

the classes. The class that has the minimum average distance between the unknown

video and each of its template video is the output class.

Class 1

Class2

Class 3

Figure 5-1: The diagram of the video classification application

In this research, we have 25 unknown videos, each five of which are the videos

showing a person performing an action that belongs to one of the five classes.

5.2 Selection of Decision Variables

There are many decision variables such as resolution, b., and by that need to be set

in the DTSW, Multiscale DTSW, or Multiscale DTSWEF algorithm. The settings of

the variables depend on the type of the video that we are comparing. In this section,

we discuss how we set some of these variables for the video classification application.

We want to set the value for each decision variable that best represents the type of

the videos that we are comparing and improves the performance of the video classifi-

cation application. We call the set of template videos in the database as the template

set. The video from which a template video is extracted is called the template source

video. Figure 5-2 illustrates the template source video. The set of the template source

videos is called the training set. To determine the value of each decision variable, we

performed some experiments on the training set.

I (QQ3 Q video
1 t t

Template
source video

Figure 5-2: An example of a template video and the corresponding template source
video

We run the classification on the training set and find the values of the decision

variables that classify the training set best. To find the best setting, we plot the

Receiver Operator Characteristic (ROC) of the classifier with different settings of the

decision variables.

The ROC plot is the plot of False Positive Rate (FPR) versus True Positive Rate

(TPR). It is usually applied for classification with two classes: positive or negative.

Figure 5-3 shows an example of the ROC plot. The FPR ranges from 0 to 1 and it is

calculated by

FPR= IFPIFPR = . (5.1)|FPI + ITNI (5.1)

False Positive (FP) means that the predicted value is positive but the actual value

is negative. True Negative (TN) means that the predicted and the actual value are

I

I T, tmnltoo
TON" In+&

I

negative. The TPR also ranges from 0 to 1 and it is computed by

TPR = ITPI (5.2)
ITPI + IFNI (5.2)

True Positive (TP) means that the predicted and the actual value are positive. False

Negative (FN) means that the predicted value is negative but the actual value is

positive.

0.

0.

0.

I-00.

0.

FPR

Figure 5-3: An example of Receiver Operator Characteristic (ROC) plot

The best classifier will be the classifier whose ROC plot is at the top left corner

(point A in Figure 5-3); the FPR is zero and the TPR is one. If the plot lies below

the diagonal line (like point C in Figure 5-3), then the classification result is most

probably wrong. If the plot lies along the diagonal line (like point B in Figure 5-3),

then the classification has 50-50 percent chance of getting the correct result. The

further the plot lies above the diagonal line, the better the classifier is.

To plot the ROC for five classes classification, we compute the average FPR and

TPR of the classification between one class and the union of the rest of the classes.

Specifically, we first compute the FPR and TPR of the classification between class 1

and the combined class 2, 3, 4, and 5. Then, we compute the FPR and TPR of the

classification between class 2 and the combined class 1, 3, 4, and 5. We repeat this

computation for all the classes and then take the average to find the FPR and TPR

for our classification application.

100

The accuracy of the classifier is defined as:

ITPI + ITN!Accuracy = + FN + + ITN (5.3)IFP| + IFNI + ITP| + |TN|
The accuracy ranges from 0 to 1.

In this thesis, we discuss four decision variables: motion scalar combination, res-

olution, b. and by, and variance for Multiscale DTSWEF.

5.2.1 Motion Scalar Combination

Because our application classifies an action (i.e. motion), it is appropriate to use

motion scalar combination as the basic data of the video instead of the intensity

or histogram. There are two components in the optical flow: movement in the x

direction or u, and movement in the y direction or v. The u and v of the template

video are computed from the motion in the template source video. From these two

components, we calculate six different pixel indexed scalar combinations of motion:

u, V u2, V 2, Uv, and uv 2.

To choose the motion scalar combination, we fixed the resolution of the template

video at 21 x 3 x 4 (x x y x time), and b. = by = 10. Figure 5-4 shows the ROC plot

of the video classification application on the training set for different motion scalar

combinations. Figure 5-5 shows the ROC plot of the video classification application

on the unknown set for different motion scalar combinations. The unknown set is the

set of unknown videos. Table 5.1 shows the accuracy of the classification result for

each motion scalar combination on the training and unknown sets.

Table 5.1: The accuracy of the video classification application on the training and
unknown sets for different motion scalar combinations

Motion scalar combination Accuracy (training set) Accuracy (unknown set)
u 0.8 0.76
v 0.65 0.8

u2 0.55 0.68
v2 0.55 0.52
uv 0.5 0.44

U2 V 2 0.25 0.28

101

. U2
'~u

2V2

0 UOu
V UV

o V

FPR

Figure 5-4: ROC plot of the video classification
different motion scalar combinations

application on the training set with

FPR

Figure 5-5: ROC plot of the video classification application on the unknown set with
different motion scalar combinations

102

I

1

From Figure 5-4 we can see that u 2v 2 is a bad choice for the motion scalar com-

bination. We can also see that u is the best motion scalar combination to classify

the training set. This is further supported by the accuracy data in Table 5.1. The

accuracy of classifying the training set by using u as the motion scalar combination

is 80%. To check if the u scalar combination can classify the unknown set as well,

we also performed the classification on the unknown set using different settings of

the motion scalar combination. Based on Figure 5-5 and Table 5.1, the u motion

scalar combination is the second best scalar combination to classify the unknown

set. Therefore, it is still acceptable to use the u motion scalar combination in our

classification application.

There is also a variation to the u and v components of the optical flow: the

normalized u and normalized v components. We call these components: UN and

VN. UN and VN are the u and v components that are normalized such that the length

of vector

UN
is equal to 1. For this option, we also have six different normalized motion scalar

combinations: UN, VN, UN2, VN2, UNVN, UN2VN2

Figure 5-6 shows the ROC plot of the video classification application on the train-

ing set with different settings of the normalized motion scalar combination. Figure 5-7

shows the ROC plot of the video classification application on the unknown set with

different settings of the normalized motion scalar combination. Table 5.2 shows the

accuracy of the classification result for each normalized motion scalar combination on

the training and unknown sets.

From Figure 5-6 we can see that UN2 VN 2 is a bad choice for the normalized motion

scalar combination. We can also see that UN 2 is the best motion scalar combination

to classify the training set. This is further supported by the accuracy data in Ta-

ble 5.2. The accuracy of classifying the training set by using UN2 as the motion

scalar combination is 85%. To check if the UN 2 scalar combination can classify the

unknown set as well, we also performed the classification on the unknown set using

103

uN

0 UN

o VN

0.2 0.4 0.6 0.8
FPR

Figure 5-6: ROC plot of the video classification application on
different settings of the normalized motion scalar combination

a:
I-

the training set with

FPR

Figure 5-7: ROC plot of the video classification application on I
different settings of the normalized motion scalar combination

the unknown set with

104

1

0.8

Table 5.2: The accuracy of the video classification application on the training and
unknown sets for various settings of the normalized motion scalar combination

Normalized motion scalar combination Accuracy (training set) Accuracy (unknown set)

UN 0.8 0.8

VN 0.6 0.84
UN2 0.85 0.88

VN 2 0.75 0.76
UNVN 0.55 0.72

uN2VN 2 0.45 0.52

different settings of the normalized motion scalar combination. Based on Figure 5-6

and Table 5.2, the UN2 scalar combination is also the best component to classify the

unknown set. Therefore, we should use UN2 scalar combination in the video classifica-

tion application if we want to use the normalized motion scalar combination instead

of the motion scalar combination.

In summary, we select the normalized motion scalar combination by performing

the classification on the training set and pick the best normalized motion scalar

combination to classify the training set. We expect that the same scalar combination

will classify the unknown set with a good accuracy.

5.2.2 Resolution

We want to downsample the unknown and template videos because it is faster to run

the DTSW or Multiscale DTSW algorithm on smaller videos. However, we do not

want to downsample so much that the performance of the classification application

is degraded.

We downsample both the unknown and the template videos by a common factor

in the time and space dimensions. To find the best resolution, we chose u as our

motion scalar combination and UN2 as our normalized motion scalar combination

based on the classification result on the training set. The b, and by are fixed at 10.

The resolution is represented by the length of x dimension x y dimension x time

dimension.

Figure 5-8 shows the ROC plot of the classification result on the training set for

105

different resolutions with UN 2 as the motion scalar combination. Figure 5-9 shows

the ROC plot of the classification result on the unknown set for different resolutions

with UN2 as the motion scalar combination.

0.8

0.6

0.4

0.2

-4

11x7x4
o 21x13x2
0 21x13x3
v 21x13x4
- 21x13x7
o 21x13x13
x 15x9x4
+ 43x25x4
* 43x25x7
* 85x52x4

0.2 0.4 0.6 0.8 1
FPR

Figure 5-8: ROC plot of the video classification application on the training set using
UN 2 as the motion scalar combination and different sets of resolution

Table 5.3 shows the accuracy of the classification result on the training and un-

known sets.

Table 5.3: The accuracy of the video classification application on the training and
unknown sets for various sets of resolution with uN2 as the motion scalar combination

[Resolution Accuracy (training set) Accuracy (unknown set)
11 x7x4 0.45 0.44

21 x 13 x 2 0.15 0.16
21 x 13 x 3 0.6 0.4
21 x 13 x 4 0.85 0.88
21 x 13 x 7 0.8 0.92
21 x 13 x 13 0.9 0.88

15 x 9 x 4 0.65 0.6
43 x 25 x 4 0.85 0.76
43 x 25 x 7 0.85 0.92
85 x 51 x 4 0.8 0.72

As seen from Figure 5-8 and Table 5.3, the best resolution for the classification

on the training set with UN 2 as the motion scalar combination is 21 x 13 x 13. In the

106

II

o

0.8

0.6
a:0ri
I-

0.4

0.2

01

4.

x

* 11x7x4
o 21x13x2
O 21x13x3
v 21x13x4
. 21x13x7
o 21x13x13
x 15x9x4
+ 43x25x4
* 43x25x7
* 85x51x4

"0 0.2 0.4 0.6 0.8 1
FPR

Figure 5-9: ROC plot of the video classification application on the unknown set using
UN 2 as the motion scalar combination and different sets of resolution

unknown set, this resolution produces the second best classifier. The best classifier

classifies the unknown set with 92% accuracy, and the classifier with the resolution

of 21 x 13 x 13 classifies the unknown set with the accuracy of 88%.

Figure 5-10 shows the ROC plot of the classification result on the training set for

different resolutions with u as the motion scalar combination. Figure 5-11 shows the

ROC plot of the classification result on the unknown set for different resolutions with

u as the motion scalar combination.

Table 5.4 shows the accuracy of the classification result on the training and un-

known sets.

As seen from Figure 5-10 and Table 5.4, the best resolution for the classification

with u as the motion scalar combination is 21 x 13 x 13. In the unknown set, this

resolution also produces the best classifier. In the training and unknown sets, both

classification results are of 100% accuracy. In summary, we do not need the full

resolution which is 85 x 51 x 13, but with smaller resolution (21 x 13 x 13), we have

a 100% accurate classification.

After this stage, we chose the motion scalar combination to be u and the resolution

to be 21 x 13 x 13.

107

0.8

0.6

0.4

- v

.
Z

+

0

11x7x4
o 21x13x2
o 21x13x3
v 21x13x4
- 21x13x7
o 21x13x13
x 15x9x4
+ 43x25x4
* 43x25x7
* 85x51x4

0.2 0.4 0.6 0.8 1
FPR

Figure 5-10: ROC plot of the video classification application on the training set using
u as the motion scalar combination and different sets of resolution

0.8

0.6

0.4

0.2

0

* 11x7x4
o 21x13x2
0 21x13x3
v 21x13x4
< 21x13x7
o 21x13x13
x 15x9x4
+ 42x25x4
* 43x25x7
* 85x51x4

0 0.2 0.4 0.6 0.8 1
FPR

Figure 5-11: ROC plot of the video classification application on the unknown set
using u as the motion scalar combination and different sets of resolution

108

I LL

II

I-

Table 5.4: The accuracy of the video classification application on the training and

unknown set a for various sets of resolution with u as r combination

Accuracy (training set)

0.45
0.3
0.7
0.8
0.9
1

0.65
0.55
0.9
0.7

Accuracy (unknown set)

0.4
0.48
0.68
0.76
0.96

1
0.72
0.44
0.88
0.9

5.2.3 Maximum Allowable Changes in the x and y Dimen-

sions

Variables b. and by determine the maximum allowable changes from a frame to the

next frame in the x and y dimensions of the optimal warp path. The bigger the

values of b, and by are, the further we allow the space shifting in the optimal warp

path. The bigger the values of b, and by also means that more computations required

by Multiscale DTSW since the total computation of Mutltiscale DTSW is 4N(4rt +

3)(4r, + 3)2 + (4N x bx x by) + 12N. Therefore, we will try to keep the value of b.

and by as small as possible without affecting the accuracy of the classification result.

Until this stage, we fix b, = by = 10, and we are able to get a 100% accurate

classification result. So, we will gradually reduce the value of b. and by until the

accuracy of the classification result is less than 100%. Table 5.5 shows the accuracy

of the classification result on the training set with the values of b = by = { 10, 8, 6,

4, 2, 1}. As can be observed from the table, the smallest value for bx and by that still

produces a 100% accurate classification result is two. Hence, we set the b. and by to

be two.

Up to this stage, we have set all the necessary decision variables for the video clas-

sification application that bases on DTSW or Multiscale DTSW. We set the motion

scalar combination to be u, the resolution to be 21 x 13 x 13, and b, = by = 2. Either

109

Resolution

11 x7x4
21 x 13 x 2
21 x 13 x 3
21 x 13 x 4
21 x 13 x 7

21 x 13 x 13
15 x 9 x 4

43 x 25 x 4
43 x 25 x 7
85 x 51 x 4

Table 5.5: The accuracy of the video classification application on the training set for
various values of b. and by

Value of b. = by Accuracy (training set)

10 1

8 1

6 1

4 1

2 1

1 0.95

DTSW-based video classification or Multiscale-DTSW-based video classification has

successfully classified the unknown set with a 100% accuracy with these settings. The

execution time for both applications can be found in Subsection 5.3.1.

5.2.4 Variance for Multiscale DTSWEF

As discussed in the previous chapter, one way to reduce the complexity of Multiscale

DTSW is by using Eigenframes representation. For the Eigenframes implementation,

we need to set the variance. A lower variance threshold tends to result in fewer re-

quired Eigenframes and therefore less computations. However, the lower the variance,

the more likely that the classification application's performance is degraded. We run

the video classification application on the training set with different variance settings

in order to select the appropriate variance's value.

Table 5.6 shows the accuracy of the Multiscale-DTSWEF-based video classifica-

tion application on the training set with different variance settings. The table shows

that the classification application's performance is degrading as we reduce the vari-

ance. If we want to have a 100% accurate solution, we should use a variance of 100%.

But, if we allow a 10% error tolerance, we can use a variance of 90%.

110

Table 5.6: The accuracy of the Multiscale-DTSWEF-based video classification appli-
cation on the training set with various settings for the variance

Variance Accuracy (training set)

100% 1
90% 0.95
80% 0.85
70% 0.75

5.3 The Performance of the Video Classification

Application

5.3.1 Comparison between DTSW, Multiscale DTSW, and

Multiscale DTSWEF

Table 5.7 shows the normalized execution time and percentage error of the video

classification application on the unknown set using DTSW, Multiscalse DTSW, and

Multiscale DTSWEF. We chose to tolerate a 10% error in the classification result.

Therefore, for the Multiscale-DTSWEF-based video classification application, we set

the variance at 90% (based on the experiments in the previous subsection). The

normalized execution time is the execution time divided by the execution time of

DTSW-based video classification application.

Table 5.7: The normalized execution time and percentage error of the video classifi-
cation application based on DTSW, Multiscale DTSW, and Multiscale DTSWEF on
the unknown set

Video comparison algorithm Normalized execution time Percentage error

DTSW 1 0
Multiscale DTSW 0.475 0

Multiscale DTSWEF 0.458 0

From the table, we can observe that the Multiscale-DTSW-based video classi-

fication is much more efficient that DTSW-based video classification application,

and Multiscale-DTSWEF-based video classification application is more efficient than

Multiscale-DTSW-based video classification application. All applications achieve the

same amount of accuracy but the Multiscale-DTSW-based application only required

111

less than half of the execution time of the DTSW-based application, and Multiscale-

DTSWEF-based application only required about 46% of the execution time of the

DTSW-based application.

Besides classifying walk, run, side, skip, and jump actions, we also have developed

a video classification application to classify left-to-right, circular, and hop pointing

actions. The illustration of the difference among the pointing actions and examples

of the template videos can be found in Appendix A. We have a total of 12 template

videos in the database for classifying these three classes.

For this video classification application, we did the same experiments as mentioned

above to decide the best value for each of the decision variables. The best motion

scalar combination is v with the resolution of 30 x 40 x 11, and a value of 10 for b,

and by. Table 5.8 shows the accuracy of the video classification application on the

training set for different settings of the variance for the Multiscale DTSWEF. From

the table, we can observe that the accuracy of the video classification application on

the training set for a variance less than 100% is quite low. Therefore, we decided not

to use Multiscale DTSWEF in this video classification application.

Table 5.8: The accuracy of the Multiscale-DTSWEF-based video classification appli-
cation on the training set (left-to-right, circular, and hop sets) for various settings for
the variance

Variance Accuracy (training set)

100% 0.9167
90% 0.8333
80% 0.667

70% 0.667

We run the DTSW-based and Multiscale-DTSW-based video classification appli-

cations on the unknown set. There are 15 unknown videos on the unknown set. Each

five videos are the videos showing a person performing a pointing action that belongs

to one of the three classes. Table 5.9 shows the normalized execution time and the ac-

curacy of the applications in classifying the three classes. Both applications achieved

a 100% accurate classification, but Multiscale-DTSW-based video classification ap-

plication executed in 57% of the execution time of DTSW-based video classification

112

application.

Table 5.9: The normalized execution time and accuracy of the video classification
application based on DTSW and Multiscale DTSW on the unknown set in classifying
left-to-right, circular, and hop pointing actions

Video comparison algorithm Normalized execution time Accuracy

DTSW 1 1
Multiscale DTSW 0.568 1

5.3.2 Sensitivity to Scale Variance

We carried out experiments to investigate the sensitivity of our video classification

to scale variation. To obtain different scales for the template video, we downsample

or upsample the template video in the space dimension and keep the unknown video

unchanged. By doing this, the size of the person jumping in the template video and

the unknown video will be different.

Table 5.10 shows the result of the classification with different scales of the template

video.

Table 5.10: The accuracy of the video classification application on the unknown set
for various scale differences between the template and unknown videos

Size of template Percentage size of template Accuracy (unknown set)

15 x 9 71.43% 0.5

17 x 11 80.95% 0.8182

21 x 13 100% 1

31 x 10 147.62% 0.7727

If we tolerate 20% error in the classification result, then the classification appli-

cation is insensitive to a variation of 20% in the scale difference.

113

114

Chapter 6

Multiscale DTSW in Video

Detection Application

In this chapter, we explore Multiscale DTSW applied to video detection.

6.1 Video Detection Application

Figure 6-1 outlines the video detection application that we developed. In the first step,

we find subvideos of the target video. The length of each subvideo is the same and the

length may or may not be the same as the length of the query video. In the second

step, we apply the video comparison algorithm to compare each subvideo to the query

video. The video comparison algorithm is either Dynamic Space Warping (DSW) or

Multiscale DTSW. More explanation about these methods or algorithms can be found

in the next section. In the third step, we stack into a Detection Volume all the {x, y}

planes of the last temporal location of the optimal warp path of comparing each

subvideo to the query video. In the fourth step, we filter the Detection Volume with a

low-pass filter. We chose an averaging filter as our low-pass filter. In the final step, we

compute the minimum distance of each {x, y} plane in the filtered Detection Volume

and plot it against the frame number of the first frame of the corresponding subvideo.

The detected temporal location of the query video will be the local minimum in the

plot. There may be more than one local minimum, and therefore, there may be

115

more than one detected temporal location. The detected spatial location of the query

video will be the {x, y} coordinate of the minimum distance in the {x, y} plane of the

detected query temporal location in the filtered Detection Volume.

Video (S) Query

Sub
of S

(Q)

l

Y

1. Extract subvideos
from target video

2. Perform DSWor
Multiscale DTSW
on each subvideo
and query video

3. Extract the top
right corner plane
of Cum and stack
into a Detection
Volume

4. Filter the Detection
Volume with a low-
pass filter

5. Find the minimum
distance of each
plane of the
Filtered Detection
Volume

Detection Volume Filtered Detection Volume

Figure 6-1: The diagram of the video detection application

6.2 Methods for Comparing Videos in the Video

Detection Application

We have three different methods for the video comparison unit in the video detection

application: Dynamic Space Warping (DSW), Multiscale DTSW, and a combination

of DSW and Multiscale DTSW.

116

.... .j .

6.2.1 DSW

As discussed in Anthony [1], DTSW is simplified if we use a common time axis or

ignore the temporal variation in the time dimension. We call this technique Dynamic

Space Warping (DSW). DSW is similar to DTSW except that we do not warp the

videos along the time dimension. Since, no warping in the time dimension, the optimal

warp path in the time dimension will be a straight diagonal path. The first frame of

the target video is matched to the first frame of the query video. However, we still

allow a shifting or warping in the space dimension.

The number of computations of DSW is relatively small since we only fill in

the Elemental Distance (D) and Cumulative Distance (Cum) hypervolumes at the

diagonal path along the time dimension. Assume that I, J, X, and Y in the D and

Cum hypervolumes are all equal to N, then the length of the diagonal path along

the time dimension is N. Hence, DSW only fills in the D and Cum hypervolumes N

cells in the time dimension for each cell in the spatial dimension. Since the size of

the space dimension is N x N, DSW requires N x N x N computations to compute

each hypervolume. As explained in Section 2.2.2, to find the optimal warp path, the

total computations required is (2N x b, x by). Therefore, the total computations of

DSW is

2N 3 + (2N x b, x by). (6.1)

For DSW-based video detection application, the length of each subvideo of the

target video is the same as the length of the query video.

6.2.2 Multiscale DTSW

For Multiscale-DTSW-based video detection application, we perform Multiscale DTSW

algorithm for comparing each subvideo of the target video to the query video. Be-

cause we allow the time axis to warp, we do not have to set the length of each target

subvideo to be the same as the length of the query video. Assume that the length of

each target subvideo is p.

Figure 6-2 shows three possible categories of the optimal warp path in the time

117

dimension of comparing the target subvideo to the query video. If the target subvideo

is too long to match the query video, then more than one frame at the end of the

target subvideo will be forced to match with the last frame of the query video as

shown in Figure 6-2(a). If the target subvideo is too short to match the query video,

then more than one frame at the end of the query video will be forced to match with

the last frame of the target subvideo as shown in Figure 6-2(c).

A B
.1. .1.

i J

I I

(b)

Figure 6-2: Three categories of the optimal warp path in the time dimension of
matching a target subvideo to the query video. (a) The target subvideo is too long
to match with the query video (b) The target subvideo matches the query video (c)
The target subvideo is too short to match with the query video.

In Multiscale-DTSW-based video detection application, we set p with a big value

such that the target subvideo will never be too short to match with the query video.

Therefore, we only have a problem if the target subvideo is too long to match with

the query video.

In Multiscale DTSW algorithm, we usually take the minimum distance along

the top right corner (i = I and j = J) of the Cum hypervolume as the distance

between the two input videos, as shown as Point B in Figure 6-2(a). But in the

video detection application, we should choose the minimum distance of the Cum

hypervolume along Point A in Figure 6-2(a). The additional distance after Point A

is due to the constraint of Multiscale DTSW that must return the optimal warp path

that ends at i = I and j = J. We do not want to include the additional distance to

our video detection analysis. Therefore, we need to be able to find Point A correctly

at the Cum hypervolume.

118

To solve this problem, we first find cells in the time dimension of the optimal warp

path that are located at j = J. We then divide each {x, y} plane along those cells

with the length of the optimal warp path from cell {1,1} in time dimension to those

cells. In Figure 6-2(a), we will divide the plane along Point A by 8, the plane along

the cell next to Point A by 9, the plane along the cell before Point B by 10, and the

plane along Point B by 11. The minimum {x, y} plane among these planes will be

the plane to be stacked in the Detection Volume.

6.2.3 Combination of DSW and Multiscale DTSW

For the third method, we combine DSW and Multiscale DTSW methods. We first find

the temporal location of the query video inside the target video by using DSW-based

video detection application. We then refine the solution by performing Multiscale-

DTSW-based video detection application at the neighbors of the query temporal

location found by DSW-based application.

The advantage of this method compare to Multiscale-DTSW-based application

is its speed. The execution time of DSW-based application is much faster than

Multiscale-DTSW-based application. The experimental results are provided in the

next section. And the execution time of this third method is slower than DSW-based

application due to the additional step of refining the solution, but it is faster than

Multiscale-DTSW method. And because we allow temporal warping in the solution

refinement step, the solution of the third method may be more accurate than the

solution of DSW-based video detection application.

6.3 The Performance of the Video Detection Ap-

plication

6.3.1 DSW-based Video Detection Application

Table 6.1 and Table 6.2 show the accuracy of the DSW-based video detection appli-

cation on 40 target cases with various temporal and spatial offsets. The location of a

119

query video inside a target video is represented by two locations: location in the time

dimension (temporal location) and location in the space dimension (spatial location).

The detected or actual query temporal location is the starting frame of the subvideo

of the target video that is similar to the query video. The detected or actual query

spatial location is the x and y coordinates in the detected or actual temporal location

frame of the target video where the first frame of the query video matches the similar-

sized region in that frame. The x and y coordinates are the center coordinate of the

region in the target frame that matches the query frame. The temporal detection

offset means how many frames away from the true query temporal location that a

detected query location is considered as a correct detection. The spatial detection

offset means that how many pixels away from the true query spatial location that a

detection query location is considered as a correct detection. The results suggest

Table 6.1: The accuracy in the time dimension of the DSW-based video detection
application on 40 target cases with various temporal detection offsets. The optical
flow component used was u. Variable bx = 5 and by = 3. Resolution was 21 x 13 x 13

(x x y x time dimension).
Temporal Detection Offset

Video set
0 ±1 ±+2 ±3 14 > 5

walk 0.875 1 1 1 1 1
skip 0.5 1 1 1 1 1
side 0.625 0.875 1 1 1 1
run 0.25 0.75 1 1 1 1

jump 0.125 0.75 1 1 1 1

Average 0.475 0.875 1 1 1

that DSW-based video detection application is very good in detecting the temporal

location of the query video inside the target video but the application is not as good

in detecting the spatial location of the query video. The results show that the ap-

plication is able to detect the downsampled query video accurately within 2 frames

away from the true query temporal location. But within 2 pixels away from the true

query spatial location, the application can only detect 22.5% of downsampled query

videos correctly.

Although the application is not able to detect the spatial location accurately, but

120

Table 6.2: The accuracy in the space dimension of the DSW-based video detection
application on 40 target cases with various spatial detection offsets. The optical flow
component used was u. Variable b. = 5 and by = 3. Resolution was 21 x 13 x 13 (x
x y x time dimension).

Spatial Detection Offset
Video set 0 ± 1 ± 2 ±3 ± +4 _ > 5

walk 0 0 0.125 0.5 1 1
skip 0.125 0.125 0.375 1 1 1
side 0 0 0 0 0.25 1
run 0 0 0.125 0.375 0.75 1

jump 0.125 0.125 0.5 1 1 1

Average J 0.05 0.05 0.225 10.575 0.8 1

this implementation is fast in execution. The average execution time for one target

case is only 33.4 seconds (running on a Pentium M laptop with 1.3 GHz processor

and 768MB memory).

6.3.2 Multiscale-DTSW-based Video Detection Application

Table 6.3 and Table 6.4 show the accuracy of the Multiscale-DTSW-based video

detection application on 40 target cases with various temporal and spatial offsets.

The 40 target cases used in this experiment are the same target cases used in the

experiments for DSW-based video detection application in the previous subsection.

Table 6.3: The accuracy in the time dimension of the Multiscale-DTSW-based video
detection application on 40 target cases with various temporal detection offsets. The
optical flow component used was u. Variable b, = 5 and by = 3. Resolution was
21 x 13 x 13 (x x y x time dimension).

Eideo set Temporal Detection OffsetVideo set
0 ±1 ±2 ±3 ±4 >= 5

walk 0.5 1 1 1 1 1
skip 0.25 0.875 1 1 1 1
side 0.125 0.75 1 1 1 1
run 0.125 0.75 1 1 1 1

jump 0.25 0.625 1 1 1 1
Average 0.25 0.8 1 1 1 1

The results suggest that Multiscale-DTSW-based video detection application is

121

Table 6.4: The accuracy in the space dimension of the Multiscale-DTSW-based video
detection application on 40 target cases with various spatial detection offsets. The
optical flow component used was u. Variable bx = 5 and by = 3. Resolution was
21 x 13 x 13 (x x y x time dimension).

Spatial Detection Offset
Video set

0 ±1 ±2 13 +4 _ +>5

walk 0 0.5 1 1 1 1
skip 0.125 0.5 0.875 0.875 1 1
side 0 0 0 0 0 1
run 0 0 0.25 0.75 1 1

jump 0 0.25 0.375 0.375 0.75 1

Average 0.025 0.25 0.5 0.6 0.75 1

good in detecting the temporal location of the query video inside the target video.

The results show that the application is able to detect the downsampled query video

accurately within 2 frames away from the true query temporal location. The appli-

cation performs better than DSW-based video detection application in detecting the

spatial location of the query video. Within 2 pixels away from the true query spatial

location, the application can detect 50% of downsampled query videos correctly.

Although this application is better than DSW-based application in detecting the

spatial location of the query video, but this implementation is slow in execution. The

average execution time for one target case is 1353.8 seconds (running on a Pentium

M laptop with 1.3 GHz processor and 768MB memory). The slow execution time of

Multiscale DTSW method compared to DSW method makes the Multiscale DTSW

method less desirable for the video detection application.

6.3.3 DSW-and-Multiscale-DTSW-based Video Detection Ap-

plication

Table 6.5 and Table 6.6 show the accuracy of the DSW-and-Multiscale-DTSW-based

video detection application on 200 target cases with various temporal and spatial

offsets. The average execution time for one target case is 216.65 seconds (running

on a Pentium M laptop with 1.3 GHz processor and 768MB memory). We want to

compare the performance of DSW-and-Multiscale-DTSW-based video detection ap-

122

plication with other methods. As explained in the previous subsection, the execution

of Multiscale-DTSW-based application is slow, therefore we want to compare only

the performance of DSW-based and DSW-and-Multiscale-DTSW-based applications.

Table 6.7 and Table 6.8 show the accuracy of the DSW-based video detection appli-

cation on the same 200 target cases used in the experiments for DSW-and-Multiscale-

DTSW-based video detection application.

Table 6.5: The accuracy in the time dimension of the DSW-and-Multiscale-DTSW-
based video detection application on 200 target cases with various temporal detection
offsets. The optical flow component used was u. Variable b, = 5 and by = 3.
Resolution was 21 x 13 x 13 (x x y x time dimension).

Temporal Detection OffsetVideo set 0 ±1 +2 ±3 14 > 5
walk 0.375 0.975 1 1 1 1
skip 0.4 0.95 1 1 1 1
side 0.275 0.85 1 1 1 1
run 0.275 0.75 0.975 1 1 1

jump 0.2 0.675 1 1 1 1

Average 10.305 0.84 0.995 1 1 1

Table 6.6: The accuracy in the space dimension of the DSW-and-Multiscale-DTSW-
based video detection application on 200 target cases with various spatial detection
offsets. The optical flow component used was u. Variable b. = 5 and by = 3.
Resolution was 21 x 13 x 13 (x x y x time dimension).

Spatial Detection OffsetVideo set
0 ±1 ±2 ±3 +4 >5

walk 0 0.475 0.975 1 1 1
skip 0 0.225 0.425 0.5 0.75 1
side 0 0 0.075 0.175 0.425 1
run 0 0.35 0.575 0.8 0.925 1

jump 0 0.55 0.575 0.75 0.875 1
Average 0 0.32 0.525 0.645 0.795 1

If we allow 2 frames tolerance in the detected query temporal location and 2

pixels tolerance in the detected query spatial location, both DSW-based and DSW-

and-Multiscale-DTSW-based applications can detect the temporal location of the

downsampled query video with 99.5% accuracy. However, for the spatial location,

DSW-based video detection application can only detect 28.5% of the downsampled

123

Table 6.7: The accuracy in the time dimension of the DSW-based video detection
application on 200 target cases with various temporal detection offsets. The optical
flow component used was u. Variable b. = 5 and by = 3. Resolution was 21 x 13 x 13
(x x y x time dimension).

Temporal Detection Offset
Video set

0 ±1 ±2 ±3 14[4 >5

walk 0.65 1 1 1 1 1
skip 0.425 0.925 0.975 1 1 1
side 0.55 0.9 1 1 1 1
run 0.175 0.6 0.875 1 1 1

jump 0.3 0.55 0.925 0.975 1 1

Average 0.42 0.795 0.955 0.995 1 1

Table 6.8: The accuracy in the space dimension of the DSW-based video detection
application on 200 target cases with various spatial detection offsets. The optical flow
component used was u. Variable b. = 5 and by = 3. Resolution was 21 x 13 x 13 (x
x y x time dimension).

Spatial Detection OffsetVideo set 0 ±1 ±2 ±3 ±4 [> 5
walk 0.025 0.125 0.35 0.6 1 1
skip 0 0.025 0.125 0.325 0.775 1
side 0 0 0 0.225 0.65 1
run 0 0 0.5 0.25 0.725 1

jump 0 0.2 0.45 0.725 0.9 1

Average 10.0051 0.07 0.285 0.425 0.81 1

query videos while DSW-and-Multiscale-DTSW-based application can detect 52.5%

of the downsampled query videos. The performance of DSW-and-Multiscale-DTSW is

also better if we allow 3 frames and 3 pixels tolerance in the detected query temporal

and spatial locations.

However, for tolerance of 4 frames and 4 pixels in the detected query temporal

and spatial locations, the performance of DSW-based video detection application

is better. It can detect the temporal location with 100% accuracy and the spatial

location with 81% accuracy. The DSW-and-Multiscale-DTSW-based application can

detect the temporal location with 100% accuracy and the spatial location with 79.5%

accuracy.

In summary, for small temporal and spatial offset, we should use DSW-and-

124

Multiscale-DTSW method since the accuracy of the detection result is better even

though the execution time is slower than the DSW method. However, for big tem-

poral and spatial offsets, we should use DSW method because it is faster and more

accurate.

6.3.4 Sensitivity to Scale Variance

We carried out experiments to investigate the sensitivity of our video detection ap-

plication to scale variation. To obtain different scales for the query video, we down-

sampled or upsampled the query video in the space dimension and kept the target

video unchanged.

Table 6.9 and Table 6.10 show the result of the video detection application with

different scales of the query video.

Table 6.9: The average accuracy in the time dimension of the video detection appli-
cation on 40 target cases for various scale differences between the query and target
videos. The optical flow component used was u. Variable b_ = 5 and by = 3. Res-
olution was 21 x 13 x 13 (x x y x time dimension). The method used was the
combination of DSW and Multiscale DTSW.

Percentage size Temporal Detection Offset
of query 0 ±1 ±2 13 14 ± > 5

15 x 9 71.43% 0.375 0.825 1 1 1 1
17 x 11 80.95% 0.525 0.75 0.975 1 1 1
21 x 13 100% 0.475 0.875 1 1 1 1
29 x 17 138.10% 0.35 0.75 0.95 1 1 1

Table 6.10: The average accuracy in the space dimension of the video detection
application on 40 target cases for various scale differences between the query and
target videos. The optical flow component used was u. Variable bx = 5 and by = 3.
Resolution was 21 x 13 x 13 (x x y x time dimension). The method used was the
combination of DSW and Multiscale DTSW.

Size oqueryPercentage size Spatial Detection Offset
of query 0 ±1 ±2 ±3 ±4 ±>5

15 x 9 71.43% 0 0.1 0.175 0.25 0.35 1
17 x 11 80.95% 0.075 0.2 0.225 0.35 0.45 1
21 x 13 100% 0 0.275 0.5 0.575 0.75 1
29 x 17 138.10% 0 0.1 0.125 0.325 0.525 1

125

If we tolerate 5% error in the video detection result, then the video detection

application's ability in detecting the temporal location of the query video is insensitive

to a variation of 20% in the scale difference for temporal detection offset of more than

2 frames. The video detection application's ability in detecting the spatial location

of the query video is sensitive to scale variance.

126

Chapter 7

Summary

Dynamic Time and Space Warping (DTSW) [1] is a technique used in video match-

ing applications to find the optimal alignment between two videos. Because DTSW

requires O(N 4) time and space complexity, it is only suitable for short and coarse

resolution videos. In this thesis, we introduce Multiscale DTSW: a modification of

DTSW that has linear time and space complexity (O(N)) with good accuracy.

7.1 Contributions

Below is the list of the contributions of this research:

* We have introduced and implemented a new approach of comparing two videos,

namely Multiscale DTSW. It is based on DTSW but has much less computa-

tional cost without much degradation in the performance. We have also shown

the efficiency of Multiscale DTSW both theoretically and empirically.

* We have also introduced and implemented several extensions to Multiscale

DTSW that can further increase its efficiency, namely Multiscale DTSW with

Eigenframes implementation (Multiscale DTSWEF), Multiscale DTSW with

Control Points, and Multiscale DTSW with Level Jump.

* We have implemented two applications (video classification application and

video detection application) to show the efficiency of Multiscale DTSW. For

127

video detection application, we introduce a novel approach of combining DSW

and Multiscale DTSW to find good solution in a fast manner.

* We have introduced a new way of comparing two videos by segmenting the

videos into several parts, comparing each part individually, warping each part

independently, and then combining all the parts back. By using this method,

the two videos will be warped in a way that the warped videos are more similar

to each other.

7.2 Future work

We did not try all possible combinations of the decision variables' values in the video

classification application in deciding the best values for the decision variables. We

chose the values of the decision variables in the order of motion scalar combination,

resolution, b. and by, and variance. However, this may not be the best way to de-

termine the values of the variables. Therefore, the work can be extended to consider

the video classification application as a system with numerous variables and certain

range for each variable and to conduct the minimum number of experiments that will

optimally choose the best value for each variable.

We have only implemented two applications that base on Multiscale DTSW as

the video comparison algorithm. There are many applications that can be built on

top of the Multiscale DTSW algorithm. For example, a video query application that

takes a sample video clip as an input.

In the experiments for tolerance to scale variance of the video classification and

detection applications, we have limited number of scale variances in the query video

because we must downsample or upsample the query video with an integer value. To

get more scale variances in the query video, we can resize the query video using an

image processing software.

Because DTSW has a parallel structure that allows it to be implemented in a

parallel manner, Multiscale DTSW can also be implemented in a parallel manner

that will further explore its efficiency.

128

Appendix A

Target and query videos

Below are some target and query videos used in this research to evaluate the perfor-

mance of Multiscale DTSW. The videos are represented by several key frames taken

from the videos.

129

A.1 Karate punch videos

Figure A-1: Karate punch query video

130

Figure A-2: Karate punch target video

131

A.2 Heart valve videos

Figure A-3: Heart valve query video

132

Figure A-4: Heart valve target video

133

A.3 Horse racing videos

Figure A-5: Horse racing query video

134

Figure A-6: Horse racing target video

135

A.4 Person walking videos

The following videos are taken from

www.wisdom.weizmann.ac.il/-vision/BehaviorCorrelation.html.

Figure A-7: A query video showing a person who is walking

136

Figure A-8: A target video showing a person walking on the beach

137

A.5 Palm opening and closing videos

Figure A-9: Palm opening and closing query video

138

Figure A-10: Palm opening and closing target video

139

A.6 Random videos

Figure A-11: Random query video

140

Hj u I u 1

EEhIE EA E CELE13 L . I IC c K I

Er F F

Figure A-12: Random target video

141

U

A.7 Video classification template videos

The following videos are taken from

www.wisdom.weizmann.ac.il/-vision/BehaviorCorrelation.html and they are part of

the template videos in the video classification application database to classify between

walk, run, side, skip, and jump action. These videos are also used in the video

detection application.

walk

run

side

skip

jump

Figure A-13: A template video for each class in the video classification application
database: walk, run, side, skip, and jump

142

i

The following videos are part of the template videos in the video classification ap-

plication database to classify between left-to-right, circular, and hop pointing action.

Left-to-
right

Circular

Hop

Figure A-14: A template video for each class in the video classification application
database: left-to-right, circular, and hop

143

144

Appendix B

Piece-wise Multiscale DTSW on

Karate Punch Videos

Piece-wise Multiscale DTSW applies Multiscale DTSW algorithm on each component

of a target and query video and find the optimal warp path for each component. Piece-

wise Multiscale DTSW then warps each component of the target video according to

its warp path and combines all the warped components of the target video into a

single video.

The similarity between the target video warped piece-wisely and the query video

is then compared with the similarity between the target video warped wholly and the

query video.

In our experiments, we divided the karate punch videos (target and query videos)

into three parts: the head, the body and the arm of the karate instructor. For the

first experiment, we searched for the optimal warp path for the full target video using

Multiscale DTSW and then warped the target video according to the found optimal

warp path. For the second experiment, we searched for the optimal warp path for

each component of the target video using Multiscale DTSW and then warped each

component according to its optimal warp path and then combined them into a single

video.

Both warped target videos from the two experiments were then compared with

the query video. The similarity between two videos is measured by the absolute

145

difference between the two videos. The absolute difference between two videos is

defined as the summation of the absolute difference in the grayscale value of each

pixel in each frame of the two videos. The higher the absolute difference is, the more

dissimilar the two videos are. The absolute differences between the warped target

video and the query video as well as the execution time for the two experiments are

shown in Table B.1. From the table, we can observe that the warped target video

found using Piece-wise Multiscale DTSW is more similar to the query video or Piece-

wise Multiscale DTSW's solution is more accurate. However, the execution time of

Piece-wise Multiscale DTSW is longer than of Multiscale DTSW.

Figure B-1 shows the query video. Figure B-2 shows the warped target video

using Multiscale DTSW and Figure B-3 shows the warped target video using Piece-

wise Multiscale DTSW.

Table B.1: Comparison of the similarity between the query video and the warped
target video found using Multiscale DTSW and Piece-wise Multiscale DTSW. The
similarity between two videos is measured by the absolute difference between the two
videos. The absolute difference between two videos is defined as the summation of
the absolute difference in the grayscale value of each pixel in each frame of the two
videos. The higher the absolute difference is, the more dissimilar the two videos are.
The execution time for each experiment running on an IBM Pentium M laptop (1.3
GHz processor with 768MB memory) is also included.

Method Absolute difference Execution time in seconds

Dimension = 11 x 12 x 12 x 7
Multiscale DTSW 17714104 25.89

Piece-wise Multiscale DTSW 16251504 259.58
Dimension = 21 x 23 x 12 x 7

Multiscale DTSW 30882268 64.00
Piece-wise Multiscale DTSW 27313873 1498.17

146

Figure B-1: Karate punch query video with the Cum hypervolume's dimension =

11 x 12 x 12 x 7

Figure B-2: Warped target video using Multiscale DTSW with the Cum hypervol-
ume's dimension = 11 x 12 x 12 x 7

147

Figure B-3: Warped target video using Piece-wise Multiscale DTSW with the Cum
hypervolume's dimension = 11 x 12 x 12 x 7

148

Bibliography

[1] Brian W. Anthony. Video Based System Monitoring. PhD thesis, Massachusetts
Institute of Technology, 2006.

[2] D. Berndt and J. Clifford. Using dynamic time warping to find patterns in time
series. In AAAI-94 Workshop on Knowledge Discovery in Databases (KDD-94),
Seattle, 1994.

[3] M. Blank, L. Gorelick, E. Shechtman, M. Irani, and R. Basri. Actions as space-
time shapes. In International Conference on Computer Vision, number 2, pages
1395-1402, 2005.

[4] S. Chu, E. Keogh, D. Hart, and Michael Pazzani. Iterative deepening dynamic
time warping for time series. In Second SIAM International Conference on Data
Mining, Arlington, Virginia, 2002.

[5] E. G. Ciani, A. Porta, G. Baselli, M. Turiel, S. Muzzupappa, F. Pieruzzi,
C. Crema, A. Malliani, and S. Cerutti. Warped-average template technique
to track on a cycle-by-cycle basis the cardiac filling phases on left ventricular
volume. In IEEE Computers in Cardiology, number 25, NY, 1998.

[6] D. M. Gavrila and L. S. Davis. Towards 3-D model-based tracking and recogni-
tion of human movement: a multi-view approach. In International Workshop on
Automatic Face- and Gesture-Recognition, Zurich, 1995.

[7] K. Gollmer and C. Posten. Detection of distorted pattern using dynamic time
warping algorithm and application for supervision of bioprocesses. In On-Line
Fault Detection and Supervision in the Chemical Process Industries 4, 1995.

[8] Hans D. Hohne, Cecil Coker, Stephen E. Levinson, and Lawrence R. Rabiner.
On temporal alignment of sentences of natural and synthetic speech. In IEEE
Trans. Acoustics, Speech, and Signal Processing, 1983.

[9] F. Itakura. Minimum prediction residual principle applied to speech recognition.
In IEEE Trans. Acoustics, Speech, and Signal Processing, number 23.

[10] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar. Multilevel hypergraph
partitioning: Application in vlsi domain. In 34th Design and Automation Con-
ference, pages 526-529, Anaheim, California, 1997.

149

[11] A. Kassidas, J. F. MacGregor, and P. A. Taylor. Synchronization of batch trajec-
tories using dynamic time warping. In American Institute of Chemical Engineers,
number 44, pages 864-887, 1998.

[12] E. Keogh, T. Palpanas, V. Zordan, and D. Gunopulos. Indexing large human-
motion databases. In International Conference on Very Large Databases
(VLDB), 2004.

[13] E. Keogh and M. Pazzani. Scaling up dynamic time warping for datamining
applications. In 6th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, Boston, 2000.

[14] E. Keogh and M. Pazzani. Derivative dynamic time warping. In SIAM Interna-
tional Conference on Data Mining, 2001.

[15] Z. M. Kovacs-Vajna. A fingerprint verification system based on triangular match-
ing and dynamic time warping. In IEEE Transactions on Pattern Analysis and
Machine Intelligence, number 22, pages 1266-1276, November 2000.

[16] M. E. Munich and P.Perona. Continuous dynamic time warping for translation-
invariant curve alignment with applications to signature verification. In 8th IEEE
International Conference on Computer Vision, 1999.

[17] Cory Myers, Lawrence R. Rabiner, and Aaron E. Rosenberg. Performance trade-
offs in dynamic time warping algorithms for isolated word recognition. In IEEE
Trans. Acoustics, Speech, and Signal Processing, 1980.

[18] T. Oates, M. D. Schmill, and P. R. Cohen. A method for clustering the experi-
ences of a mobile robot that accords with human judgments. In 17th National
Conference on Artificial Intelligence, pages 846-851, 2000.

[19] L. Rabiner and B. Juang. Fundamentals of speech recognition. Prentice Hall,
Englewood Cliffs, N.J, 1993.

[20] Michalis Raptis, Matteo Bustreo, and Stefano Soatto. Time warping under dy-
namic constraints. In IEEE International Conference on Computer Vision, Rio
de Janeiro, Brazil, 2007.

[21] C. A. Ratanamahatana and E. Keogh. Everything you know about dynamic
time warping is wrong. In Third Workshop on Mining Temporal and Sequential
Data, in conjuction with the Tenth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD2004), 2004.

[22] H. Sakoe and S. Chiba. Dynamic programming algorithm optimization for spoken
word recongition. In IEEE Trans. Acoustics, Speech, and Signal Processing,
number 26, 1978.

150

[23] S. Salvador and P. Chan. FastDTW: Toward accurate dynamic time warping in
linear time and space. In KDD Workshop on Mining Temporal and Sequential
Data, pages 70-80, Seattle, 2004.

[24] M. Schmill, T. Oates, and P. Cohen. Learned models for continuous planning. In
Seventh International Workshop on Artificial Intelligence and Statistics, 1999.

[25] Jonathan Shlens. A tutorial on principal component analysis. 2005.

[26] Lindsay I Smith. A tutorial on principal components analysis. February 2002.

[27] H. J. L. M. Vullings, M. H. G. Verhaegen, and H. B. Verbruggen. Ecg seg-
mentation using time warping. In Advances in Intelligent Data Analysis, pages
275-285, 1997.

[28] Xiaopeng Xi, Eamonn Keogh, Christian Shelton, Li Wei, and Chotirat Ann
Ratanamahatana. Fast time series classification using numerosity reduction. In
ACM International Conference on Machine Learning, pages 1033-1040, 2006.

[29] B. Yi, H. Jagadish, and C. Faloutsos. Efficient retrieval of similar time sequences
under time warping. In International Conference of Data Engineering, 1998.

151

