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Weak two-scale convergence in L2 for a two-dimensional case
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Abstract
In this paper, we present definitions and some properties of the weak two-scale convergence (introduced by Nguetseng in
1989) for component-wise vector or matrix functions within a two-dimensional case.
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Tóm tắt
Trong bài báo này, chúng tôi trình bày các định nghĩa và một số tính chất của hội tụ hai-kích thước yếu (được giới thiệu
bởi Nguetseng vào năm 1989) cho các hàm vectơ hoặc ma trận trong một trường hợp hai chiều.

Từ khóa: đồng nhất hóa hai-kích thước; hội tụ hai-kích thước yếu; hai chiều

1. Introduction

Let us consider in dimension two, a bounded
reference domain Ω=Ω1×Ω2 ∈R×R and a vari-
able x = (x1, x2) ∈ Ω . Within two-scale homog-
enization theory, when it is not possible to cal-
culate limit in terms of the usual weak limit, it
can be possible in terms of two-scale limit intro-
duced in 1989 by Nguetseng [1]. In this spirit,
we first present a brief review of the usual weak
convergence in L2(Ω) then the definitions and
properties of the weak two-scale convergence
for component-wise vector or matrix functions

[2, 3, 4, 5], in a two-dimensional case.

2. Preliminaries

Latin indices vary in the set {1,2}. The space
of functions, vector fields in R2, and 2×2 matrix
fields, defined overΩ are respectively denoted by
italic capitals (e.g. L2(Ω)), boldface Roman capi-
tals (e.g. V ), and special Roman capitals (e.g. S).

Throughout the study, we use the following
list of notations [2]:

• Y := [0,1]2 is the reference periodic cell.
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• C 0(Ω) is the space of functions that vanish
at infinity.

• We denote by C∞
per(Y ) the Y -periodic C∞

vector-valued functions in R2. Here, Y -
periodic means 1-periodic in each variable
y i , i = 1,2.

• H 1
per(Y ), as the closure for the H 1-norm

of C∞
per(Y ), is the space of vector-valued

functions v ∈ L2(Y ) such that v (y) is Y -
periodic in R2.

•

〈v〉y = 1

|Y |
ˆ

Y
v (y)dy .

•

Hper(Y ) := {v ∈ H 1
per(Y ) | 〈v〉y = 0} .

• We write · for the canonical inner products
in R2 and R2×2, respectively.

• . means ≤ up to a multiplicative constant
that only depends on Ω when appropriate.

The Sobolev norm ‖ ·‖W 1,2
0 (Ω) is of the form

‖v‖W 1,2
0 (Ω) = (‖v‖2

L2(Ω)
+‖∇v‖2

L2(Ω))
1
2 ;

here, ‖v‖L2(Ω) := ‖|v |‖L2(Ω) , where |v | denotes
the Euclidean norm of the 2-component vector-
valued function v , and ‖∇v‖L2(Ω) := ‖|∇v |‖L2(Ω) ,
where |∇v | denotes the Frobenius norm of the
2 × 2 matrix ∇v . We recall that the Frobenius
norm on L2(Ω) is defined by |X |2 := X · X =
tr(X TX ) .

Let ε be a natural small scale. For prospec-
tive applications in homogenization, based on
[6, 7, 8, 9], we consider uε(x) ∈ W 1,2

0 (Ω) de-
pending only on x1, that is, uε(x) = uε(x1), with
boundary conditions of Neumann type. As no-
ticed in [10], we do not discriminate a func-
tion on R from its extension to R2 as a func-
tion of the first variable only. We assume that

uε(x1) = u
(

x1

ε

)
is a periodic function in x1 with

period ε, equivalently, u
(

x1

ε

)
= u(y1) is a peri-

odic function in y1 with period 1. It means that
for any integer k,

uε(x1) = uε(x1 +ε) = uε(x1 +kε) ,

equivalently,

u
(

x1

ε

)
= u

(
x1

ε
+1

)
= u

(
x1

ε
+k1

)
= u(y1 +k) .

3. Weak convergence

We describe the basic notions of the theory
of two-scale convergence (thanks to [4, 5]). Two-
scale convergence here can be viewed as a gen-
eralized version of the usual weak convergence
in the Hilbert space L2(Ω) , which is defined as
follows [4].

Let us consider a sequence of functions uε ∈
L2(Ω). By definition, (uε) is bounded in L2(Ω) if

limsup
ε→0

ˆ
Ω

|uε|2 dx ≤ c <∞ ,

for some positive constant c.
We say that a sequence (uε(x)) ∈ L2(Ω) is

weakly convergent to u(x) ∈ L2(Ω) as ε→ 0, de-
noted by uε*u, if

lim
ε→0

ˆ
Ω

uε(x) ·φdx =
ˆ
Ω

u ·φdx , (1)

for any test function φ ∈ L2(Ω).
Moreover, a sequence (uε) in L2(Ω) is de-

fined to be strongly convergent to u ∈ L2(Ω) as
ε→ 0, denoted by uε→ u, if

lim
ε→0

ˆ
Ω

uε ·v εdx =
ˆ
Ω

u ·v dx , (2)

for every sequence (v ε) ∈ L2(Ω) which is weakly
convergent to v ∈ L2(Ω).

We then have the following well-known weak
convergence properties in L2(Ω).

(a) Any weakly convergent sequence is bounded
in L2(Ω).

(b) Compactness principle: any bounded se-
quence in L2(Ω) contains a weakly conver-
gent subsequence.
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(c) If a sequence (uε) is bounded in L2(Ω) and
(1) holds for all φ ∈ C∞

0 (Ω), then uε * u ∈
L2(Ω).

(d) If uε→ u ∈ L2(Ω) and v ε* v ∈ L2(Ω), then

lim
ε→0

ˆ
Ω

uε ·v εdx =
ˆ
Ω

u ·v dx .

(e) Weak convergence of (uε) to u in L2(Ω) to-
gether with

lim
ε→0

ˆ
Ω

|uε|2 dx =
ˆ
Ω

|u|2 dx

is equivalent to strong convergence of (uε) to
u in L2(Ω).

Throughout this paper, we denote by Y =
[0,1]2 the cell of periodicity. (In our case, a pe-
riodic cell has the form Y = [0,1]× [0,1] .) The
mean value of a 1-periodic functionψ(y1) is de-
noted by 〈ψ〉, that is,

〈ψ〉 ≡
ˆ

Y 1
ψ(y1)dy1 .

Recall that y1 = ε−1x1, and we do not distinguish
between a function on Y 1 and its extension to Y
as a function of the first variable only.

Also, here, the symbol L2(Y ) works not only
for functions defined on Y but also for the space
of functions in L2(Y ) extended by 1-periodicity
to the whole of R2. Similarly, C∞

per(Y ) denotes the
space of infinitely differentiable 1-periodic func-
tions on the whole R2.

For later discussion, we introduce the follow-
ing classical result.

Lemma 3.1 (The mean value property). Let
h(y1) be a 1-periodic function on R and h ∈
L2(Y 1). Then, for any bounded domain Ω, there
holds the weak convergence

h
(

x1

ε

)
* 〈h〉 i n L2(Ω) as ε→ 0. (3)

Proof. The proof is based on property (c) and
can be found in [4].

4. Weak two-scale convergence

As mentioned in [4], in homogenization the-
ory, one often has to handle quantities of the form
(for our case)

lim
ε→0

ˆ
Ω

uε(x)

(
φ(x)h

(
x1

ε

))
dx ,

where uε * u,φ ∈ C∞
0 (Ω) a scalar function, h ∈

C∞
per(Y 1). In general, it is not possible to calcu-

late this limit in terms of the usual weak limit u.
However, it is possible in terms of the two-scale
limit introduced in 1989 by Nguetseng [1]. In this
spirit, we have the following definition of weak
two-scale convergence in L2(Ω) [2, 3].

Definition 4.1. Let (uε) be a bounded sequence
in L2(Ω). If there exist a subsequence, still de-
noted by uε, and a function u(x , y1) ∈ L2(Ω×Y 1),
where Y 1 = [0,1] such that

lim
ε→0

ˆ
Ω

uε(x)

(
φ(x)h

(
x1

ε

))
dx

=
ˆ
Ω×Y 1

u(x , y1)(φ(x)h(y1))dx dy1
(4)

for any φ ∈ C∞
0 (Ω) and any h ∈ C∞

per(Y 1), then
such a sequence uε is said to weakly two-scale
converge to u(x , y1). This convergence is denoted
by uε(x)** u(x , y1) .

For vector (or matrix) uε, equation (4) im-
plies

lim
ε→0

ˆ
Ω

uε(x) ·Φ
(

x ,
x1

ε

)
dx

=
ˆ
Ω×Y 1

u(x , y1) ·Φ(x , y1)dx dy1 ,

(5)

for every Φ ∈ L2(Ω;C per(Y 1)), whose choice is
explained in [11] (p. 8).

The Definition 4.1 makes sense because of
the following compactness result, which was
proved in [12] and first in [1].

Theorem 4.2. Any bounded sequence uε ∈ L2(Ω)
contains a weakly two-scale convergent subse-
quence.

Proof. The proof is obtained as in [4] or [5] with
the help of the mean value property (3).



Tina Mai  / Tạp chí Khoa học và Công nghệ Đại học Duy Tân 5  (48) (2021) 88-92 91 

Remark 4.3. Regarding the class of test func-
tions φ ∈ C∞

0 (Ω),h ∈ C∞
per(Y 1) in condition of

(4), it can be extended (with the help of the
density argument) to the class of test functions
φ ∈C∞

0 (Ω),h ∈ L2(Y 1).

Consequently, the convergence uε ** u im-
plies the convergence

uε(x)b

(
x1

ε

)
** u(x , y1)b(y1) , ∀b ∈ L∞(Y 1) .

(6)
We now have the following lower semiconti-

nuity property [4].

Lemma 4.4. If uε(x)** u(x , y1), then

liminf
ε→0

ˆ
Ω

|uε(x)|2 dx ≥
ˆ
Ω×Y 1

|u(x , y1)|2 dx dy1 .

(7)

Proof. The proof can be found in [4] or [5].
Specifically, denote by D a countable set of func-
tions which is dense in L2(Ω×Y 1) and consists
of finite sums of the form

Φ(x , y1) =∑
φ j (x)h j (y1) , (8)

where φ j ∈C∞
0 (Ω) , h j ∈C∞

per(Y 1) .
For any test function of the form (8), using

Young’s inequality, we have

2

ˆ
Ω

uε(x)Φ

(
x ,

x1

ε

)
dx ≤

ˆ
Ω

|uε(x)|2 dx

+
ˆ
Ω

∣∣∣∣Φ(
x ,

x1

ε

)∣∣∣∣2

dx .

Letting ε → 0, by definition of weak two-scale
convergence and the mean value property, we get

liminf
ε→0

ˆ

Ω

|uε|2dx ≥ 2

ˆ

Ω×Y 1

u(x , y1)Φ(x , y1)dxdy1

−
ˆ

Ω×Y 1

|Φ(x , y1)|2 dx dy1 .

Now, choosing a sequence Φ(x , y1) = Φk (x , y1)
such that Φk → u(x , y1) in L2(Ω×Y 1) as k →∞,
we obtain (7).

Recall that a function Φ(x , y1) on Ω×Y 1 is
said to be a Carathéodory function if it is contin-
uous in x ∈Ω for almost all y1 ∈ Y 1 and measur-
able in y1 for any x ∈Ω.

Now, we formulate an important result about
the extension of the class of admissible functions
in the original Definition 4.1. More details and
proofs can be found in [11, 12, 13].

Lemma 4.5. Let uε ** u(x , y1). If Φ(x , y1)
is a Carathéodory function and |Φ(x , y1)| ≤
Φ0(y1),Φ0 ∈ L2(Y 1), then

lim
ε→0

ˆ
Ω

uε(x)Φ

(
x ,

x1

ε

)
dx

=
ˆ
Ω×Y 1

u(x , y1)Φ(x , y1)dx dy1 .

(9)

In particular, one can choose Φ(x , y1) =
φ(x)h(y1),φ ∈C∞

0 (Ω),h ∈ L2(Y 1) .
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