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Abstract: In this paper we aim to investigate the boundedness of Ui’é’” on the product of

p-adic weighted Lebesgue spaces. We obtain the necessary and sufficient conditions on
weight functions to ensure the boundedness of that operator on the product of p-adic
weighted Lebesgue spaces. Moreover, we obtain the corresponding operator norms.
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1. INTRODUCTION

Theories of functions from Q3 into C play an important role in the theory of the p-adic
guantum mechanics, the theory of p-adic probability. As far as we know, the studies of the
p-adic Hardy operators and p-adic Hausdorff operators are also useful for p-adic analysis
[4,5,6,14,24,27,28].

The weighted Hardy averaging operators are defined for measurable functions on Q,
by:

U = | feow@ade, xe ol (1.1)

here Zj, is the ring of p-adic non-zero integers, and dx is the Haar measure on Q,,. Rim
and Lee [24] considered the problem of characterizing function y on Z;,, so that we have
inequalities:
JUhfl, <cnfix

where X is p-adic Lebesgue or BMO space. The corresponding best constants C are also
obtained by these authors.
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Hung [14] considered a more general class of p-adic weighted Hardy averaging
operators, which are called p-adic Hardy-Cesaro operators, defined as:

Ub S = [ fe@ap@a, (12)
7

where s: Zy, — Q, and y: Z,, — [0; o) are measurable funtions.

The characterizations on funtion ¥ (t), under certain conditions on s(t), so that:
Upofll, < CIf ik

for all f € X, where X is p-adic Lebesgue space, are obtained. The best constants C in
the above inequalities are worked out too. It is interesting to notice that, by applying the
boundedness of Uy, ; on p-adic weighted Lebesgue spaces, Hung gives a relation between

p — adic Hardy operators and discrete Hardy inequalities on the real field.
In [15], Hung and Ky gave the definition of the weighted multilinear Hardy-Cesaro
operators U X " to be:

Def|n|t|on 1.1. Letm,n € N,:[0,1]* - [0, 00), 54, .. [0 1]™ — R be measurable
funtions. The weighted multilinear Hardy-Cesaro operators U " is defined by:

U (e = |

[0,1]"

]_[ filse@) |0, (13)

where £ = (fi, oo, i), § = (Sp, s ).
The authors obtain the sharp bounds of U "* on the product of Lebesgue spaces and

central Morrey spaces. In our paper, we deflne the p-adlc weighted bilinear Hardy-Cesaro
operators U%’” as follow:

Definition 1.2. Let n be positive interger numbers and zp:(z;;)” - [ 0;0),5 =
(51,82): (Z*)n — Q3 be measurable. The p-adic weighted bilinear Hardy-Cesaro operators
Ufzzn which define on f = (fu.f2): Qp — €2 vector of measurable funtions, by

LEYAICES ﬂfk<sk(t)x) oL
p k=1

Our paper is organized as follow. In Section 2 we give the content of this paper including
the notation and definitions that we shall use in the sequel. We define the p-adic weighted

Lebesgue spaces LL (Q4). We also state the main results on the boundedness of Uf,'j:i;” on

the p-adic weighted Lebesgue space and work out the norms of Ufl’,én on such space. In
Section 3 we give the conclusion of this paper.
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2. CONTENT
2.1. Basic notions and lemmas

Let p be a prime number and let r € Q*. Write r = pY % where a and b are integers not
divisible by p. Define the p-adic absolute value | - |, on Q by |r|, = p~" and |0], = 0. The
absolute value | - |,, gives a metric on Q defined by d, (x,y) = |x — y|,. We denote by Q,
the completion of Q with respect to the metric d. Q,, with natural operations and topology
induced by the metric d, is a locally compact, non-discrete, complete and totally
disconnected field. A non-zero element x of Q,, is uniquely represented as a canonical form
x = p¥(xg + x1p + x,p* + ---) where x; € Z/pZ and x, # 0. We then have |x|, = p77.
Define Z, = {x € Q,:|x|, < 1}and Z}, = Z, \ {0}

Qp = Q, X - X Q, contains all n -tuples of Q, . The norm on Qp is [x|, =
max <x<n | Xk lp fOr x = (x4, ..., x,,) € Q5. The space Q} is complete metric locally compact
and totally disconnected space. For each a € Q, and x = (x4, ..., x,) € Qp, we denote
ax = (axy, ..., axy). Fory € Z, we denote B, as a y-ball of Q3 with center at 0, containing
all x with [x|, < p¥,and S,, = B, \ B,_, its boundary. Also, for a € Qg,By(a) consists of
all x with x — a € B, and S, (a) consists of all x withx —a € S,

Since Qg is a locally-compact commutative group with respect to addition, there exists
the Haar measure dx on the additive group of (@g normalized by fBO dx = 1.Thend(ax) =
la| 4dx forall a € Q}, |B,(x)| = p% and |S, (x)| = p@ (1 —p~9).

We shall consider the class of weights W, which consists of all nonnegative locally
integrable function w on Qf so that w(tx) = [t|§w(x) for all x € QF and t € Qy and 0 <
fsow(x)dx < oo, Itis easy to see that w(x) = |x|3 is in W, ifand only if « > —d.

Definition 2.1. Let w be any weight function on Q¢, that is a nonnegative, locally
integrable function from Qg into R. Let 1 < r < oo, the p-adic weighted Lebesgue spaces
L7, (Q%) be the space of complexvalued functions f on Q¢ so that

1/r
Il f ”LZ)(Qg)z (J@d |f(x)|rw(x)dx> <

For further readings on p -adic analysis, see [25,26] . Here, some often used
computational principles are worth mentioning at the outset. First, if f € L}U(Qp) we can
write

fw(x)dx = fw(y)dy.
s X)w(x)dx );J.sy yw(y)dy

Second, we also often use the fact that
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f flax)dx = if f(x)dx,
g lalj Jog

ifa e Q4\ {0}and f € L}(Q%).
In order to prove the main theorem, we need the following lemma.
Lemma2.2. Letw € W,,a > —d and y > 0. Then, the funtions

0 if |x|, < 1
fry(¥) =9 -2te L
x|, " 7 iflx], =1
T d n n — (l)(So) 1/r
belong to L7, (Q¢%) and frll (@) = (l_p-r/ﬂ) >0

Proof. From the formula for f, ., we see that

1l oy = de oyl 00 dx
14

—(d+a+L2)
= J | x| Y w(x)dx
[x|p=1

p
@ r
_ Z J p_k<d+a+ﬁ)w(x)dx
k=0 Sk
- Z J p (et )y
k=0 ~So
o
=) p Fasy
k=0
= _Lw(SO)
1—p 7v?
< o
Th r ay) f h d _( w(So) i/r
us f,, € L, (Q4) foreach y an ||ﬂ'y||LZ)(Qg) = (m) > 0.

2.2 . Bounds of UZ‘ZE’" on the product of weighted Lebesgue spaces

Let X be LZ,(Q%). Our aim is to characterize condition on functions ¥(t) and
s1(t), so(t) such that

lups" Nl < Clifilly - Ifally
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holds for any f;, f, and the best constant C is obtained. The main result of this section
is Theorem 3.2.

In this section, if not explicitly stated otherwise, q, @, q1, 92, a1, a, are real numbers,
1<g<01<q;<o1<q, <o,a; >—d,a, > —d so that

1 1 1
—=—+4—
qa q1 492
and
a a
q=1% 1%
41 a:
The weights w; € W, , w, € W,,, set
a q

w(x) = a)f_l(x) . wg_z(x)
It is obvious that w € W,
Definition 3.1. We say that (w4, w-) satisfies the W5 condition if

W(S) > (ST, (So)

For example, (wy,w;) where w;(x) = |x|3, w,(x) = |x|p? is satisfies the Wy
condition.

Through out this paper, s, s, are measurable functions from (Z;)n into Q, and we
denote by s the vector (sq,s;).

Theorem 3.2. Assume that (wq, w,) satisfies W5 condition and there exits constant
B>0 such that |s;(ty, ..., t,)l, = min{|t1|§, |tn|§} and |5, (ty, o, bn)lp =
min{ltllﬁ, |tn|f,} and for almost everywhere (ty, ..., t,) € (Z;)n. Then there exists a
constant C such that the inequality

0557 o 12 g gy = Wbz oy Wiz o

holds for any measurable f;, f, if and only if

_d+a1 _d+a2

A= 5@, © 15201, @ p(H)dt < oo
(#)

Moreover, if (3.7) holds then A is the norm of Uf"s?'” from LE (QF) x LT (Q¢) to
LL(Q4).

Proof. As we note above, w € Wy . Firstly, suppose that A is finite. Let f; €
LY (Qf), f, € L (QF). Using Minkowski's inequality, Holder's inequality and p-adic
change of variable (2.2), we have
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Il70.2n ]
1Uys (fl’fZ)”LZ,(Qg)
1

1 q
ff d( f( . (|f1(51(t)x)f2(52(t)x)|)1/1(t)dt) w(x)dx>
Qd \/(z

—];2;,)” de

p

IA

q
Ifl(sl(t)x)fz(Sz(t)X)Iqw(X)dx) P(t)de

IA

1
2 —_—

f —[ (f |fk(5k(t)x)|qkwk(x)dx> Y(t)dt
)" Qg

k=

2

k=1

IA

Thus, U}’ is bounded from LY (@F) x L2 (@) to L7,(Qg) and the best constant C

in (3.6) satisfies

C <A
For the converse, assuming that Ui'z'” is defined as a bounded operator from
L% (Qf) x L (Q¢) to LL,(Q4). Let y be an arbitrary positive number and we set

= ﬂyandy'= 2)/
q Tl

and
0 if x|, <1
ﬁh'h = | _d-gfl_% .
x|, if |x[, = 1.
0 if x|, <1
ﬁlzJ’z = L L

2
xl, T if|xl, > 1.

From Lemma 22, we get that f, . €L (Q%) fs,y, €LE(QF) and

a1 1

wq1(Sy) 7 w-(So) az
1 Tl _ 120 1 1 _ 2\20
fgpyal 13 (ag) T Y >0, |[fg, 192 (of) = ( _q_2> > 0.

1-p vi 1-p Y2

We fix x € Q¢ which |x|, > 1 and set

Sy ={t € (Z; ) s (Oxl, > 1} n{t € (Z} ) s, (©)xl, > 1}.
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From the assumption [s;(t,...,ty)], = min{ltllﬂ,...,|tn|§},|sz(t1,...,tn)|p >
min{ltllﬁ,...,ltnlg} ae t=(ty,..t,) € (Z)", there exist a subset E of (Z3)" has
measure zero and S, is contained in

{te @) 1tl, = 1x,"*}\ E.

Consequently, we have
119

p2n
(ﬁh V1’ﬁ12 yZ)”LZ,(@%)

q
=j j(m%@@ny@w@@mmetw@Mx
(@)
@)
d+a; 1 d+a, 1\ 49
- ('xlp ", " ) ’
[x|p=z1
_M_i d+a2 1 q
TR b L
< |[ s s, 0L, Fpoydt| w@dx
Sy »
q dta; 1 _dtap 1 a
—d-a—z a1 y2 a2 y3
zf xl, fl&@ﬂ 5,01, @ Ppodt | o@dx
[x]p=1
—d— a_i d+a1 1 _dtap 1 a
qz 2
zj‘ %I, wuyu<f @1, == Is, 01 Vwax#)
[x|pzpY )41
_dta; 1 _d+ap 1 q
_p "fqy”Lq(Qd)<f |51(t)| q1 y1.|52(t)|p az yzl[l(t)dt)

Here we denote F by the set {¢ € (Z; )" |tl, = pY/F}. Since |sy(ty, ..., tn)lp =

min{|ty]5, ... 1tal5 } 152 (ts, s )l = min{leg 15, . [Lalf ) e £ = () € (25)"
imply that S,, D F.
Thus we have the following inequality

d+a1 1 _d+a; 1 p.2,n
T q vz 1 "U (flhh’flh)/z)”
[ sl ™ sol, ® e < prp— e
’ anligy o) Varaligs o)

1
< Cpv.
Here C is the constant in (3.6). Letting y to infinity, by Lebesgue's dominated
convergence Theorem, we obtain
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d+aq d+ay

Jagy 151®1, ™ 1520, ™ p(D)de < C.

H p,Z,TL —
From (3.7) and (3.9), we obtain [[U}"% ”L‘Z}l(Q%)XLZ,ZZ(Q%)%Z)(Q,%) =

3. CONCLUSION

In this paper, we find out the norm of p-adic weighted bilinear Hardy-Cesaro operator
on product of p-adic weighted Lebesgue spaces as following:

_d+a1 __d+052
ll77p.2m|| " "

T [ 1s@L ™ 150l ® wode <
I P,5 ||L(61011(Qg)xLizz(Qg)—)Lgu(Qg) (Z;)" D p
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CHUAN CUA TOAN TU SONG TUYEN TINH p-ADIC HARDY-
CESARO CO TRONG TREN TiCH CAC KHONG GIAN LEBESGUE
Tém tit: Trong bai bdo nay, muc dich cia ching t6i la nghién civu tinh bi chdn cia todn
tir U&’,’;’" trén tich cua cac khong gian p-adic Lebesgue c6 trong. Chlng i tim ra duoc
diéu kién can va du cho cac ham trong d@é toan tir ndy bj chan trén tich cac khong gian p-
adic Lebesgue cé trong. Hon nita, chiing t6i ciing tim ra chudn ciia todn tir song tuyén tinh

p-adic Hardy-cesaro fuong irng.
Tir khod: Khong gian Lebesgue, diéu kién.



